REGEN project

In partnership with

D & P Solutions

Project	Beeches, Long Meadow	v, Goring on	Thames RG89EG
Subject	Structural C	Calculations	
	Calc. No.	Rev	Date
	23-1806-C01	В	21.02.24

Note to Contractor: PLEASE READ BEFORE COMMENCING ON SITE

- 1. If you require any additional information before starting the works please email us.
- 2. Whilst carrying out the works, if you uncover any additional structural elements not noted within this calculation package please contact us as this may require a check and revised structural calculations
- 3. The contractor should carry out their own measured survey and investigations prior to starting works on site and ordering materials to confirm any critical assumptions noted in this document on page 3!
- 4. Please carefully read all notes on next two pages.
- 5. These calculations should be submitted for a full plans submission to building control prior to starting the works, a compliance report must be issued to the structural engineer prior to the works commencing on site. If you proceed with the works using a Building Notice, you are assuming the risk for the project and we will not accept responsibility or liability for any delays on site or associated costs or damages in connection with the delay or materials and labour cost associated with the re-design.

-		
H	Beeches, Long Meadow, Goring on Thames RG89EG	
11		IMPORTANT NOTES
	In partnership with Calculation Number Rev Des. Chkd. Chkd. Date D & P Solutions 23-1806-C01 B DL DK DK 21.02.24	
-	General Notes	Timber Notes
1.	All works are to be in accordance with the current British Standard and Building Regulations.	1 All structural timber to be grade C24 unless noted otherwise
2.	This document to be read in conjunction with all relevant drawings issued by the Architect and specialist sub-contractors together with the specifical discrepancies to be reported to Engineer.	
3.	Please note that the lengths of structural elements indicated in these calculations are not for fabrication purposes. The length of elements may diffe	er slightly to 3. All timbers to be treated with an approved preservative to BS 4. All cut ends to be retreated before fixing
	allow for bearing, etc. The lengths of elements should always be based on onsite measurements. If the lengths of elements should differ from these	
	by more than 10%, please contact Engineer.	unless noted otherwise.
4. 5.	All setting out, levels, DPC, insulation, fire protection & waterproofing information is to be obtained from the Architect. The Party Wall Act may apply.	6. All joist hangers are to be galvanised mild steel with minimu
	Structural elements not shown in this document are out of scope and to be designed by others.	specialist manufacturer. Timber joints between members are or proprietary fixings. Where input is required contact with e
7.	Off-the-shelf items to be installed as per manufacturer's details/recommendations.	Floor and roof constructions, walls require lateral restraints to
	All specified structural elements (i.e. steel beams & columns, timber beams&posts, etc.) are to be installed in a single continuous length unless stat	ed otherwise. Regulation requirements.
	No holes, chases, cut-outs, existing or proposed services or the like may be formed in or pass through any beam, column, or load bearing wall. This document is intended to be printed in colour.	8. Where two or more pieces of timber are specified in one ele
	CALCULATIONS ARE SUBJECT TO BUILDING CONTROL APPROVAL. ANY WORKS CARRIED OUT PRIOR TO APPROVAL OF CALCULATION	@500mm CTRS 9. New timber joists spanning more than 2.5m to be restrained
	BUILDING CONTROL ARE AT OWN RISK. WE WILL NOT ACCEPT LIABILITY FOR ANY REQUIREMENTS, ALTERNATIONS, COSTS OR DELA	AYS 10. Provide clearance to under-side of timber joists at intersecting
	RESULTING FROM THIS.	to prevent unintended load transfer.
		11. Double joists shall be provided under non-load bearing stud
	Construction Notes / Health & Safety Notes	baths and under airing cupboards. 12. Notch at support for timber element can be provided for rafte
1.	We do not provide monitoring on site and the experience, diligence and management of the building contractor's team must be relied on. The Contr	
	provide permanent, experienced site managers capable of understanding the requirements of our specifications and design.	is not permitted. If it is required then contact engineer.
	The Contractor shall ensure that stability of the building and adjacent premises is maintained at all stages of construction. The contractor is to desig	
	maintain all necessary temporary works and programme the work accordingly. In addition to the usual risks associated with building works and materials, of which competent builder should be aware, the following site and work	specific health max 450mm CTRS or angle brackets (if preferred). 14. Timber to timber/steel connections to be specified by others
	and safety risks have been identified: demolition, excavation, drilling and cutting into existing structure or materials should be carried out carefully in	
	are any unknows services hidden in the area.	Foundation Notes
	The project requires the introduction of heavy structural elements such as steel beams or concrete lintels. Builder is to take into consideration the p	
	structural elements, ensuring that the method of lifting and placement is safely carried out. Responsibility for this element lies with the Contractor. A walls need to be propped in order to introduce some of the lintels, this should also be considered in relationship to the risk assessment of the Contra	
	working procedures must be adopted. Responsibility for this element lies with the Contractor. Splice details for long-span beams can often be accord	а
	required.	1.0m if soil is found to be shrinkage clay, final depth to build
	The design has been based on the assumption that the construction will be undertaken by a Competent Building Contractor used to undertaking this	
	building works, of this type and complexity, and in accordance with Good Building Practice and general accepted standards and methods of constru-	uction. 4. Minimum cover to reinforcement to be 50mm unless noted c 5. Existing foundations are assumed sufficient to carry the exist
		6. Main contractor to check condition of existing walls and four
	Steelwork Notes	7. When additional load is added onto existing foundations, the
1.	All steel beams / columns to be of steel grade min. S355. All plates to be of steel grade min. S275.	the BCO to checked/approved if adequate prior to commend
	All bolts to be grade 8.8 unless noted otherwise.	 If soil is found to be shrinkable clays and trees are located r accordance with NHBC standard chapter 4.2. Spread found.
	All welds to be min 6mm fillet welds unless noted otherwise.	9. Pad footing to be placed centrally under columns/piers unles
4. 5.	Steel elements end bearing to be equal to full width of any spreader or post / min. 100mm end bearing unless noted otherwise. Corus "The Prevention of corrosion on structural steelwork" to be used as a guidance for steelwork finish/paint system.	10. Pad footing near existing foundations should be at least equ
6.	Design of all connections is the responsibility of the steelwork sub-contractor unless noted otherwise.	underpinning may be required to prevent undermining if new
	Steel fabricator to submit fabrication drawings for checking before fabrication begins.	adjacent existing footing. 11. Footing near existing foundations should be at least equal ir
8. 9.	Padstones and steel beams to avoid clashes with chimney breast. Please contact Engineer if otherwise. All padstones to be C35 grade.	may be required to prevent undermining if new footing propo
	As an alternative to padstones, 25mm thick steel spreader plates for padstones less than 440mm long can be used and 45mm thick steel spreader	plates for footing. New foundations to be excavated in 1.0m long bays
	padstones longer or equal than 440mm long can be used. Steel plates plan dimensions to be the same as padstones plan dimensions.	
	Provide clearance to under-side of steelwork at intersecting wall locations where no bearing information is shown to prevent unintended load transfer	
	Where pair of beams is presented, steel beams to be bolted together with M16 bolts @ spacer tubes @max 600mm centres. Beams and columns to be placed centrally on bearings, ie beams/posts/padstones unless noted otherwise. Beams to be located centrally under wa	Design Approach
	are working as lintels on external cavity walls.	BS 6399 P1/P2/P3 Loading for Building.
	All steelwork below ground to have a minimum of 50mm concrete encasement unless noted otherwise.	Code of practice for dead and impo
	All new columns to be tied to walls using wall starter kits or ancon ties.	If padstope Code of practice for wind loads. Code of practice for imposed roof l
16.	In places where beam is located parallel to padstone, beam must be centralized on the padstone. End bearing length of the beam to be equal to ha length. In places where beam is located perpendicular to padstone, end bearing length to be equal to padstone width. See drawings for details.	
17.	Site welding is not allowed unless noted otherwise.	BS 8103 P3 Structural design of low-rise buildir
	Site modifications to structural steelwork shall not be carried out.	Code of practice for timber floors a
		BS 5950 P1 Structural use of steelwork in build
	Masonry Notes	Code of practice for design – Rolle
1.	Masonry Notes All proposed bricks to be standard format clay 20N/mm2 bricks unless noted otherwise.	BS 8110 P1 Structural use of concrete.
2.	All proposed blockwork to be 7.3N blocks unless noted otherwise.	Code of practice for design and co
	Mortar below DPC to be designation M6 (ii), above designation M4 (iii).	
	Existing loadbearing masonry wall to be minimum 100mm thick wall. 100mm wide blocks shall not be laid flat if load bearing.	BS 5628 P1 Code of practice for the use of mas Structural use of unreinforced mas
	Any disturbed and loose masonry should be removed and rebuilt.	
	Wall ties to be provided in accordance with the provisions in Building Regulation requirements.	BS 5268 P2 Structural use of timber.
		I ADD AT DESCRIPTION OF A

5268 PT5

of any spreader or post / min. 100mm end bearing

thickness of 2.5mm specified and designed by the to be created using either traditional joinery techniques aineer.

y straps in accordance with the provisions in Building

nent the timbers are to be fixed together using M12 bolts

by solid noggins in 1/3 of their length. wall locations where no bearing information is shown

ork partitions running parallel with joists spans, under

rs to a depth not greater than 40mm underside of the neer). For other timber elements using notch at support

in anchored into the masonry using min M12 anchors @

I/m2 is assumed. Building control officer or other ring stratum is valid.

(fy = 500 N/mm2) unless noted otherwise.

um width 0.6m, minimum depth 0.6m or minimum depth ng control officer) unless noted otherwise. These depths satisfactory ground, or where there are trees nearby. herwise.

ing building.

dations prior to construction.

e existing foundations to be exposed and inspected by ement of works.

earby, foundations depth may need to be calculated in tions may not be suitable to use.

s noted otherwise.

I in depth to existing foundation depth. Local

pad footing proposed formation level is deeper than

depth to existing foundation depth. Local underpinning sed formation level is deeper than adjacent existing bays being excavated at the same time must not be

CONTROL BEFORE CASTING ANY FOUNDATIONS.

sed loads.

ads.

nd roofs for housing.

ng. d and welded sections

struction

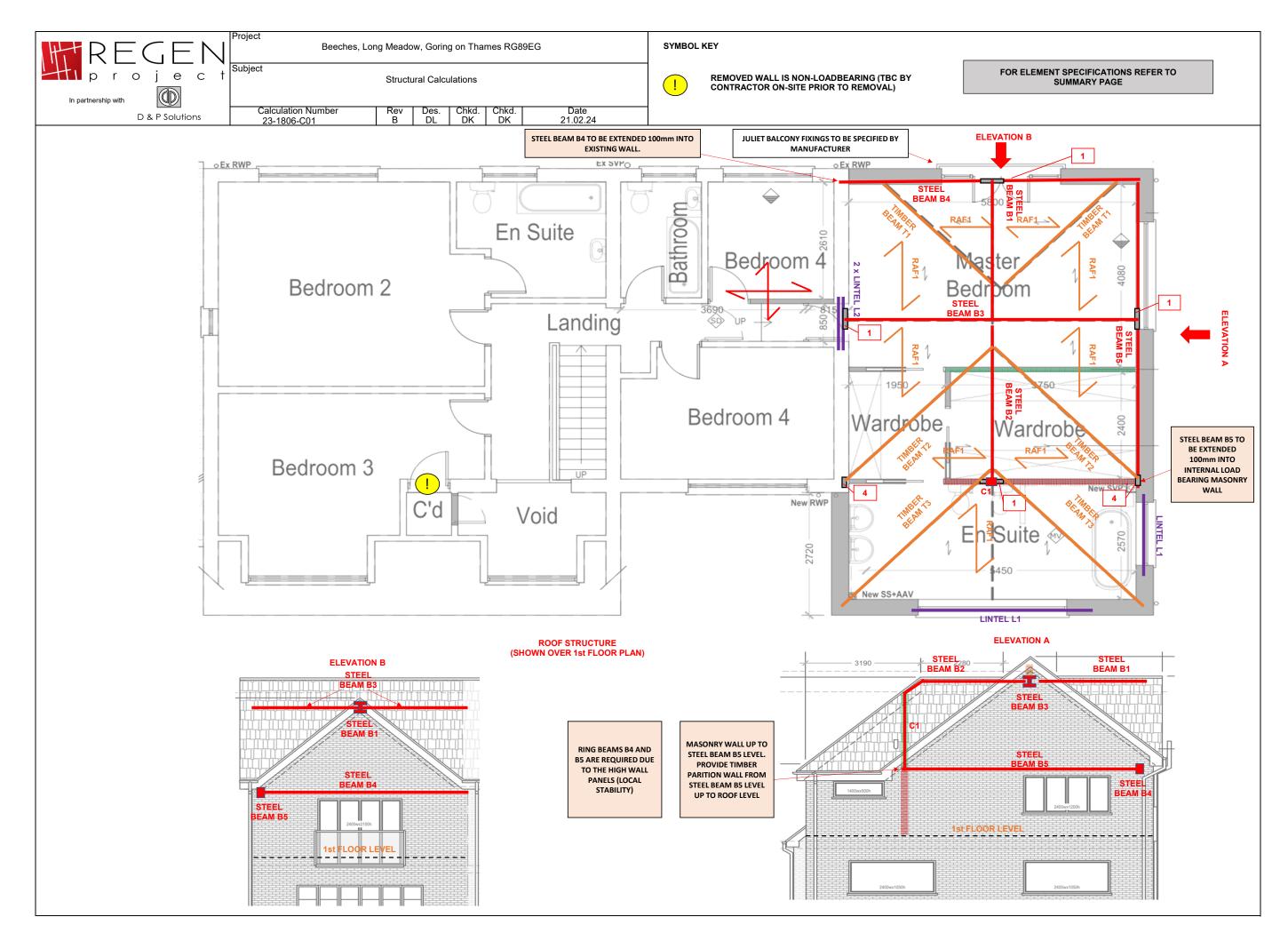
onry. onry.

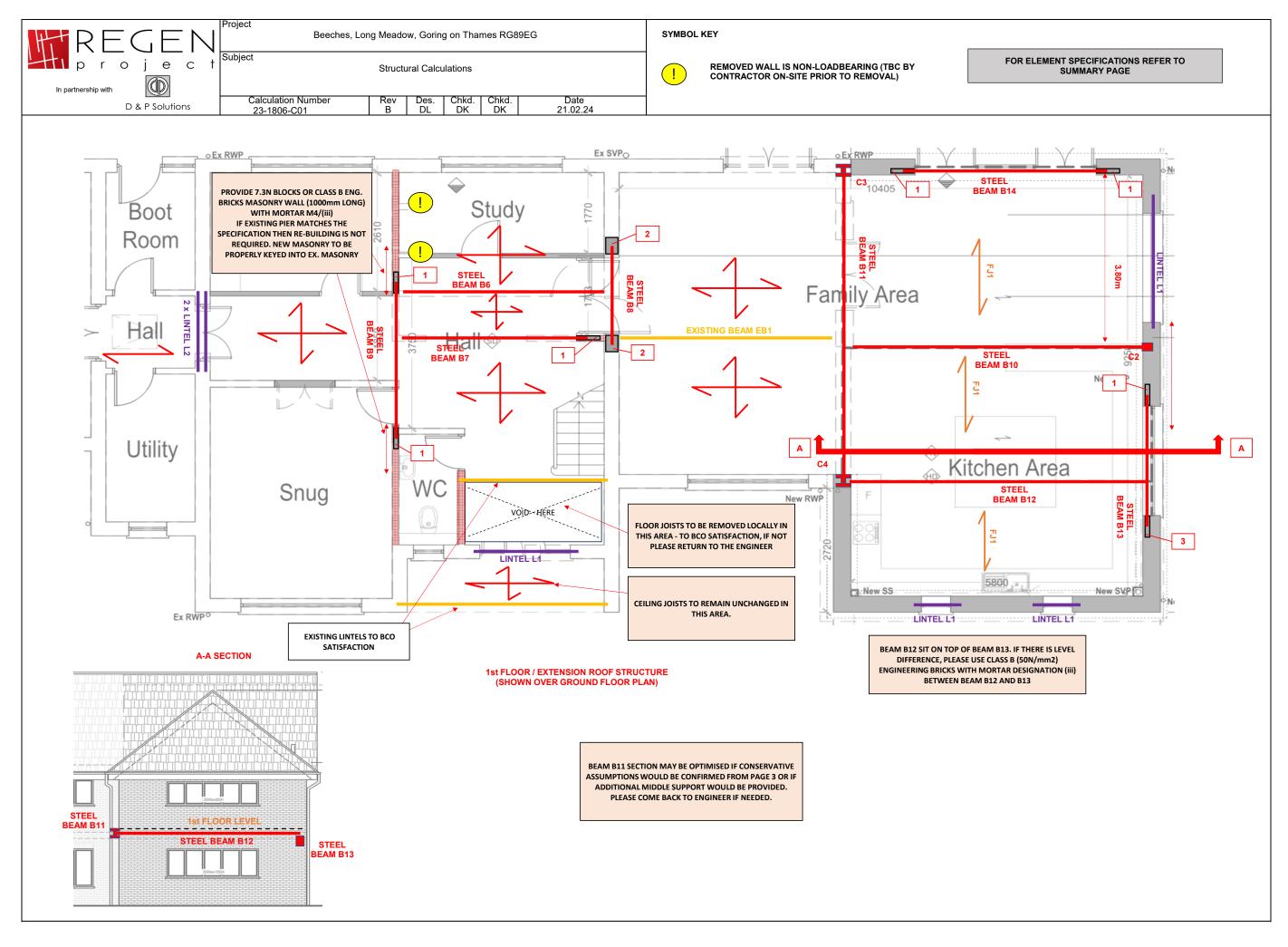
Code of practice for permissible stress design, materials and workmanship.

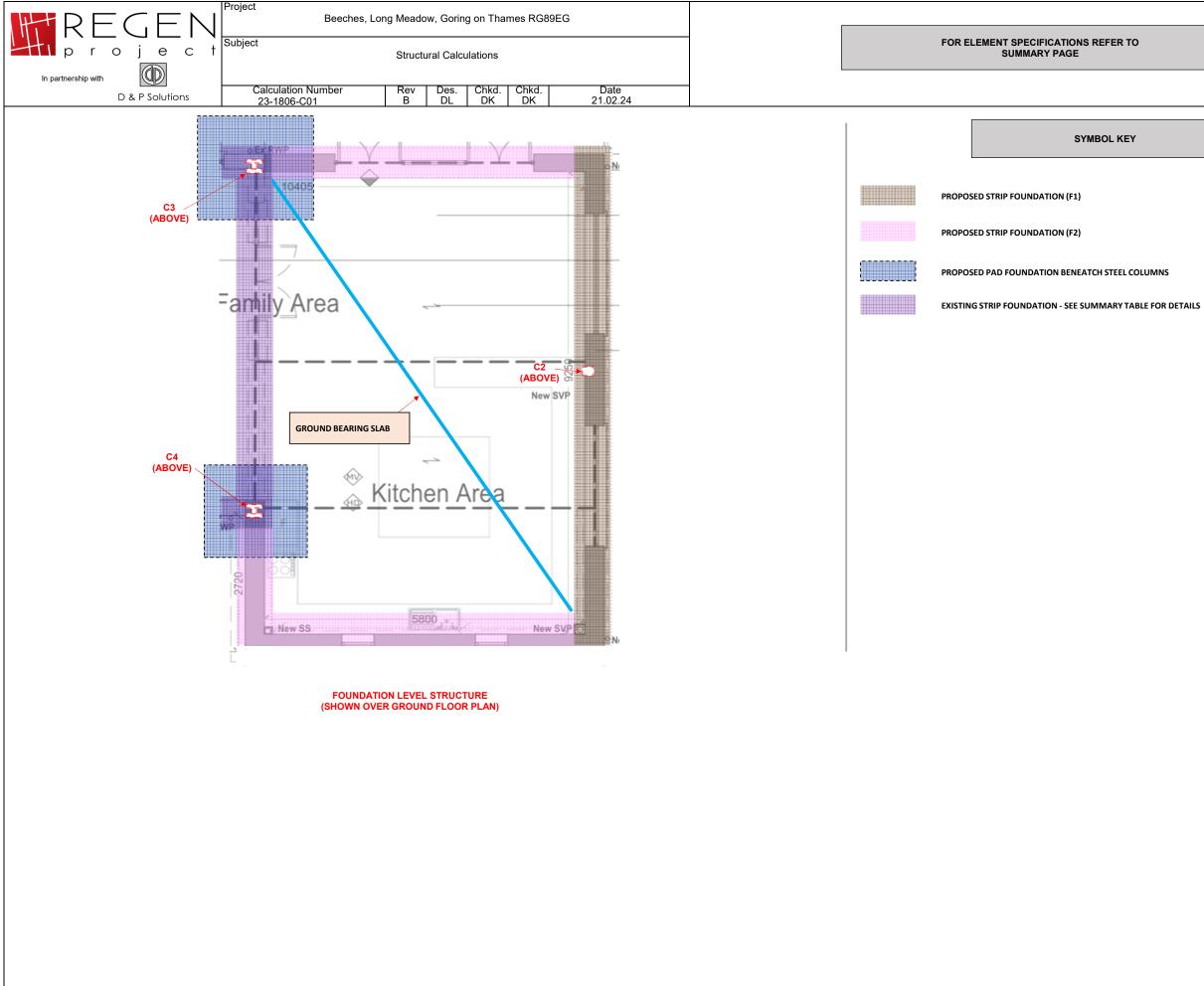
	Drain at	
REGEN	Project Beeches, Long Meadow, Goring on Thames RG89EG	
projec	t Subject Structural Calculations	SYMBOL KEY & DESIGN ASSU
In partnership with		
D & P Solutions	Calculation Number Rev Des. Chkd. Chkd. 23-1806-C01 B DL DK DK 21.02.24	
	SYMBOL KEY	DESIGN ASSUMPTIONS
	LOAD BEARING MASONRY WALL	CRITICAL ASSUMPTIONS - THESE MUST BE CONFIRMED BEFORE CO
	LOAD BEARING STUD / DORMER WALL	DESIGN MAY NEED TO CHANGE:
	APPROX LINE OF LOAD BEARING STUD / DORMER WALL OVER SHOWN DASHED	 Masonry load bearing wall locations (hatched on general arrangement / stered arr
	NON-LOADBEARING TIMBER PARTITION WALL SHEATHED IN PLYWOOD / OSB EITHER SIDE. WALL TO BE STRAPPED TO WALLS AND FLOORS.	 If ground is shrinkable clay and there are trees within 30m of the proposed forwarded to engineer, as foundations may need to be updated.
	PLY / OSB BOARDED JOISTS WITH ADDITIONAL LATERAL RESTRAINT BY STRAPS.	4. Existing/Proposed ground floor is ground bearing slab.
	SEE PLYBOARDING OF TIMBER JOISTS NOTE ON GENERAL ARRANGEMENT PAGE.	CONSERVATIVE ASSUMPTIONS - THESE CAN BE CONFIRMED TO POT NOT CRUCIAL:
	STEEL BEAM ON PLAN/ COLUMN ON SECTION / ELEVATION	1. Existing/Proposed blockwork assumed as dense blocks.
н	STEEL UB / UC COLUMN ON PLAN / STEEL BEAM ON SECTION / ELEVATION	2. Existing floor joists span direction.
6-6	STEEL UB / UC COLUMN OVER SHOWN DASHED	2. Wall above beam B6 assumed as masonry wall supporting roof via purlins
	STEEL SHS COLUMN	4. Beams B7, B8, B9, B11 assumed as supporting masonry wall and roof via
C3	STEEL SHS COLUMN OVER SHOWN DASHED	5. Wall above existing beam EB1 assumed as masonry wall/
	TIMBER BEAM ON PLAN / TIMBER POST ON SECTION / ELEVATION	
	TIMBER POST / RAKING STRUT	
r = 1 1 = 1	APPROX BEARING OF TIMBER POST / RAKING STRUT OVER SHOWN DASHED	
	LINTEL	
	EXISTING BEAM / EXISTING LINTEL	
I	FLEXIBLE ENDPLATE CONNECTION. SEE DRAWING DETAILS	
-1-	EXISTING JOISTS SPAN DIRECTION UNLESS NOTED OTHERWISE	
RAF	NEW RAFTERS SPAN DIRECTION	
RJ	NEW FLAT ROOF JOISTS SPAN DIRECTION	
RJ CJ FJ GFJ	NEW CEILING JOISTS SPAN DIRECTION	
FJ	NEW FLOOR JOISTS SPAN DIRECTION	
GFJ	NEW GROUND FLOOR JOISTS SPAN DIRECTION	
	PADSTONE SHAPE	

UMPTIONS

DMMENCING THE WORK ON SITE AS


teel beam bearing positions).


d development, then a tree survey to be


TENTIALLY OPTIMISE DESIGN BUT ARE

5.

a purlins existing floor joists.

SYMBOL KEY

	eches, Long Meadow, Goring on Thames RG89EG		
project In partnership with	Structural Calculations		SUMMARY PAGE
In partnership with Calculation Numbe Calculation Numbe 23-1806-C01	er Rev Des. Chkd. Chkd. Date B DL DK DK 21.02.24		
D & D Solutions		LINTELS 1.1 = CATNIC CG CAVITY WALL LINTEL (SATISFACTORY BY INSPECTION) 1.2 = 140x100 R6 HI-SPEC NAYLOR LINTEL OR SIMILAR (SATISFACTORY BY INSPECTION) ALL PROPOSED BLOCKWORK (INNER SKIN OF CAVITY WALL AND WALL ABOVE BEAM B12) TO BE CONSTRUCTED USING LIGHTWEIGHT BLOCKS (MAXIMUM DENSITY: 1000 kg/m3).	ALLOWABLE BEARING PAD FOUNDATION TO UNLESS NOTED OTHE DEPTH OF FOUNDATION COLUMNS AND FROM SEVERAL FOUNDATION MOST SUITABLE OPTH EXISTING FOUNDATION DEAGREED ON ST UNDER C2: - STRIP FOUNDATION: BOTTOM) UNDER C3: - PAD FOUNDATION: BOTTOM) UNDER C4: - PAD FOUNDATION: BOTTOM) PROPOSED STRIP FOU 600mm WIDE, MIN 2: (SATISFACTORY BY IN FINAL DEPTH TO BE A

FOUNDATIONS

NG CAPACITY OF 100kN/m2 ASSUMED.

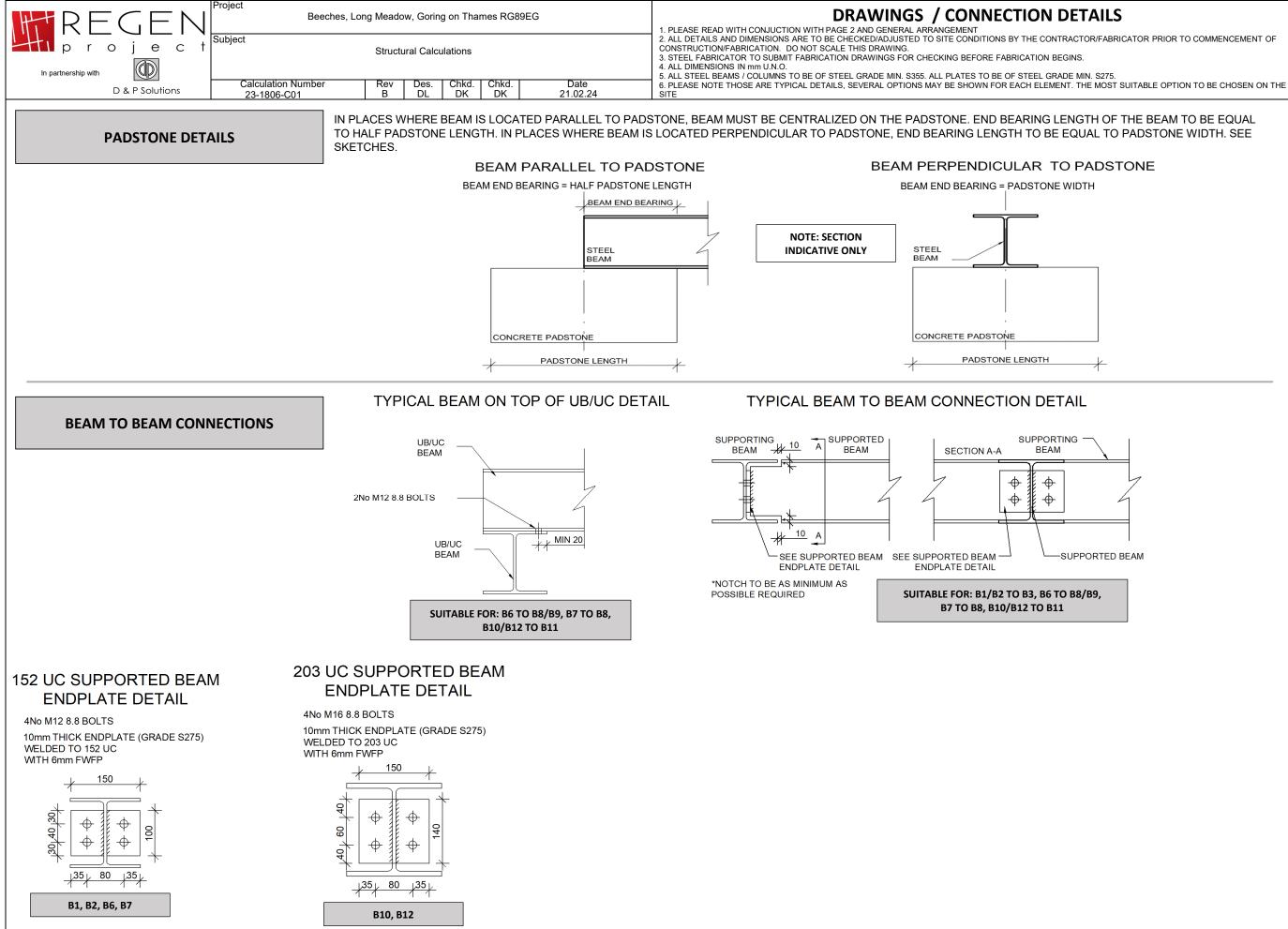
TO BE PLACED CENTRALLY UNDER COLUMN/PIER HERWISE.

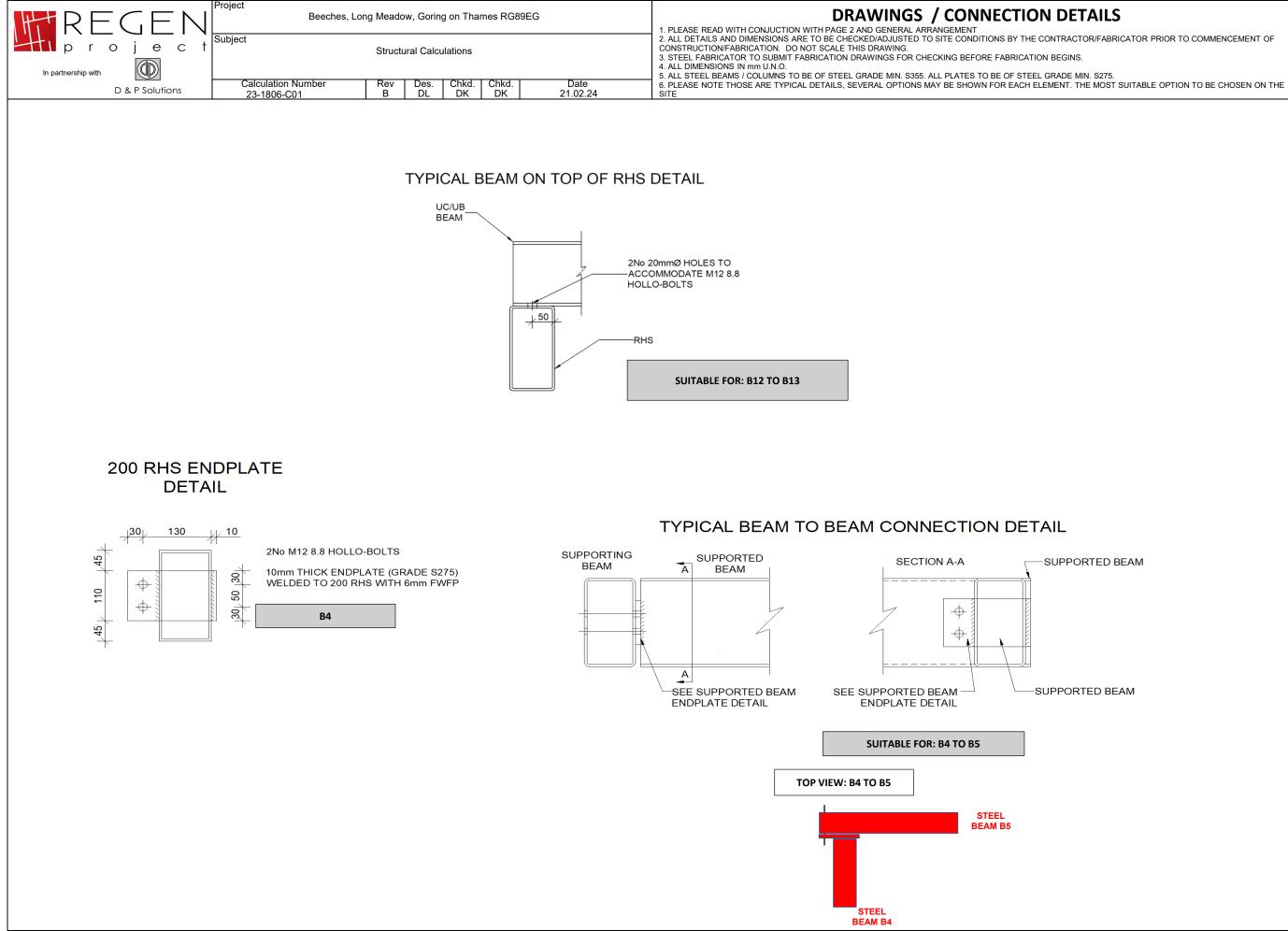
ATIONS TO BE MEASURED FROM TOP OF PADSTONE FOR OM GROUND FLOOR LEVEL FOR PIERS.

TION OPTIONS ARE SHOWN FOR EACH ELEMENT. THE PTION TO BE CHOSEN ON THE SITE.

TION TO BE EXPOSED AND IF EXISTING FOUNDATIONS FICATION - THEN THE RE-USE OF THESE FOUNDATIONS IS SITE WITH BUILDING CONTROL INSPECTOR.

DN: MIN DEPTH: 0.90m / MIN WIDTH: 0.60m / DNE UNDER COLUMN: 440x100x215mm

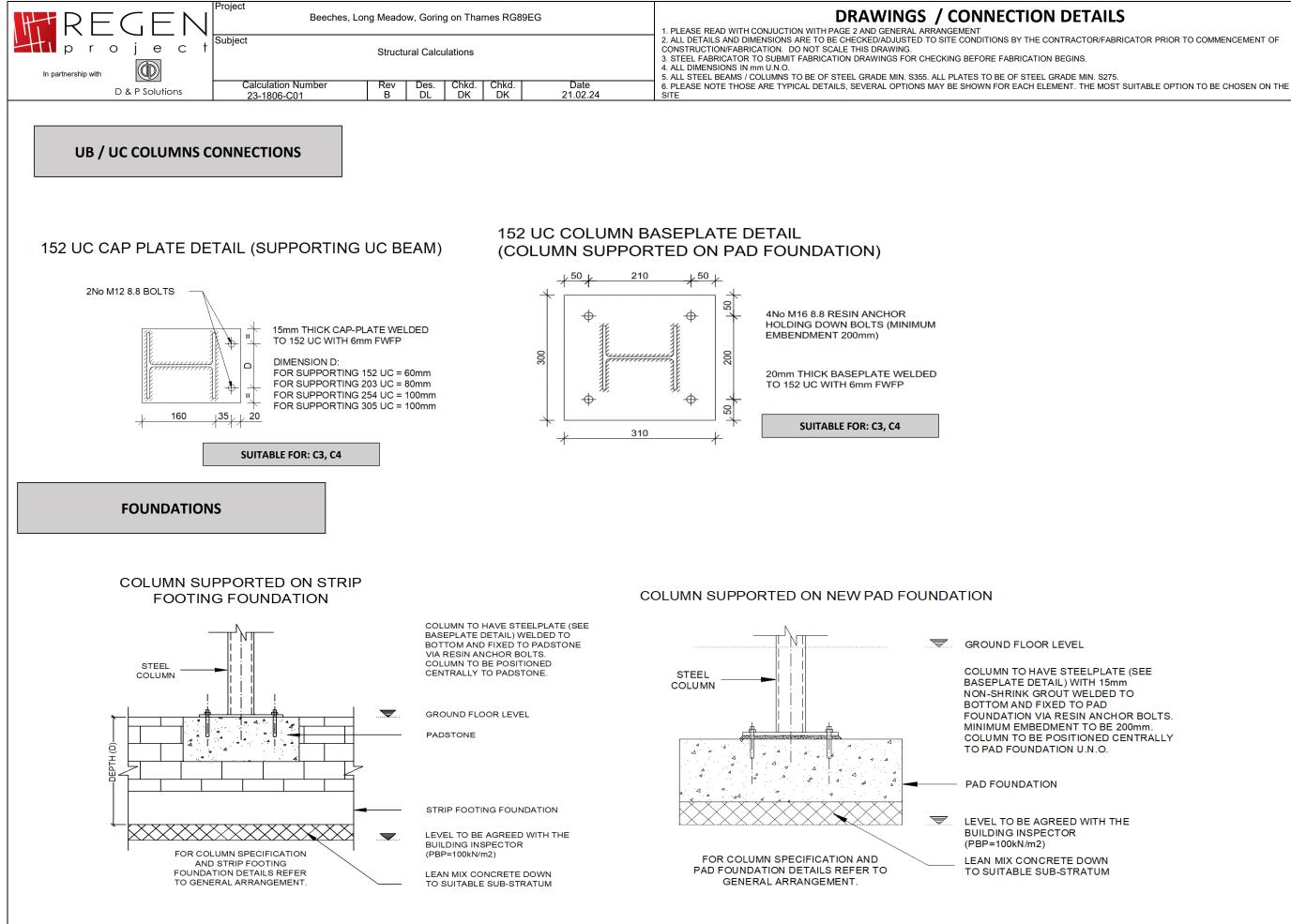

N: 1.40mx1.40mx0.50m WITH A393 MESH (TOP AND 2


N: 1.60mx1.60mx0.60m WITH A393 MESH (TOP AND 2

OUNDATION (F1): I 225mm CONCRETE THICKNESS, MIN 900mm DEPTH INSPECTION)

OUNDATION (F2): I 225mm CONCRETE THICKNESS, MIN 600mm DEPTH INSPECTION)


E AGREED WITH BUILDING CONTROL OFFICER ON SITE.



-SUPPORTED BEAM

-SUPPORTED BEAM

COLUMN TO HAVE STEELPLATE (SEE BASEPLATE DETAIL) WITH 15mm NON-SHRINK GROUT WELDED TO BOTTOM AND FIXED TO PAD FOUNDATION VIA RESIN ANCHOR BOLTS. MINIMUM EMBEDMENT TO BE 200mm. COLUMN TO BE POSITIONED CENTRALLY

LEVEL TO BE AGREED WITH THE LEAN MIX CONCRETE DOWN TO SUITABLE SUB-STRATUM

REGEN	Project Beeches, Long Meadow, Goring on Thames RG89EG
project	Subject Structural Calculations
In partnership with	
D & P Solutions	Calculation NumberRevDes.Chkd.Chkd.Date23-1806-C01BDLDKDK21.02.24

LOAD SUMMARY

LOAD SUMMARY		
Beam & Block Floor		
Finishes	0.20 kN/m2	
75mm Screed	1.80 kN/m2	
Insulation	0.10 kN/m2	
150mm B&B Floor	1.80 kN/m2	
Total Dead load	3.90 kN/m2	
Imposed load	1.50 kN/m2	
Balcony		
Finishes & Boarding	1.00 kN/m2	
Insulation	0.10 kN/m2	
Joists	0.10 kN/m2	
Ceiling / Plasterboard	0.20 kN/m2	
Total Dead load	1.40 kN/m2 1.50 kN/m2	
Imposed load	1.50 KN/III2	
Timber Floor		
Finishes & Boarding	0.20 kN/m2	
Insulation	0.10 kN/m2	
Joists	0.10 kN/m2	
Ceiling / Plasterboard	0.20 kN/m2	
Partition Walls	0.50 kN/m2	
Total Dead load	1.10 kN/m2	
Imposed load	1.50 kN/m2	
Ceiling		
Finishes	0.05 kN/m2	
Insulation	0.10 kN/m2	
Joists	0.10 kN/m2	
Ceiling / Plasterboard	0.20 kN/m2	
Total Dead load	0.45 kN/m2	
Imposed load	0.25 kN/m2	
Pitched Roof		
Finishes / Tiles	0.50 kN/m2	
Battens / Felt / Insulation	0.10 kN/m2	
Structure	0.20 kN/m2	
Ceiling / Plasterboard	0.20 kN/m2	
Total Dead load	1.00 kN/m2	
Imposed load	0.75 kN/m2	
Flat Roof		
Finishes	0.50 kN/m2	
Felt / Insulation	0.10 kN/m2	
Joists	0.20 kN/m2	
Ceiling / Plasterboard	0.20 kN/m2	
Total Dead load	1.00 kN/m2	
Imposed load	0.75 kN/m2	
WALLS		
Solid 215mm Masonry Wall / Cavity	Wall	4.20 kN/m2
100mm Blockwork / Brickwork Wall		2.10 kN/m2
New Cavity Wall		3.20 kN/m2
100mm Lightweight Wall		1.10 kN/m2
Dormer Wall / External Timber Wall		1.00 kN/m2
Timber Partition Wall		0.35 kN/m2
OTHERS		
Bi-folds Doors		0.50 kN/m2
Glazing		0.50 kN/m2
Chimney		2.10 kN/m2
PV Panels		0.30 kN/m2
Balustrade		0.50 kN/m2

Site altitude ∆s	=	44 m
Snow zone	=	А

	Project Beeches,	Long Meadow, Goring on Thames RG89E	G
	Subject	Structural Calculations	
In partnership with D & P Solutions	Calculation Number 23-1806-C01	Rev Des. Chkd. Chkd. B DL DK DK	Date 21.02.24
WIND LOAD W1 - DESIGN DUE TO BS 639	9 (FOR B4, C3)		
Building and topography data Location = Basic wind speed Vb = Terrain category = Reference height of building Hr = Site altitude Δs = Altitude factor Sa = Distance from the location to the sea =	Oxford 19.7 m/s Country 8.50 m 44 m 1.04 80 km		
Site wind speed Wind direction = 64 Direction factor Sd = Seasonal factor Ss = Probability factor Sp = Site wind speed Vs =	°± 45° 0.75 1.00 1.00 15.39 m/s		
Dynamic pressure - windward wall Effective height He = Terrain and building factor Sb = Effective wind speed Ve = Dynamic pressure qs =	8.50 m 1.59 24.53 m/s 0.369 kN/m^2		
Pressure coefficient External pressure coefficient cpe = Internal pressure coefficient cpi =	0.85 (Conservative approach) -0.30 (Conservative approach)		
Size effect factor Size effect factor Ca =	1.00 (Conservative approach)		
<u>Net pressure =</u>	<u>0.424 kN/m^2</u>		

	Project Beeches,	Long Meado	w, Gorin	g on Tha	mes RG89E0	3
	Subject	Structu	ıral Calcı	ulations		
In partnership with	Calculation Number	Rev	Des.	Chkd.	Chkd.	Date
D & P Solutions	23-1806-C01	В	DL	DK	DK	21.02.24
WIND LOAD W2 - DESIGN DUE TO BS 6399 Building and topography data	<u>(FOR B5)</u>					
Location = Oxford Basic wind speed Vb = 19.7 Terrain category = Country Reference height of building Hr = 8.50 Site altitude Δs = 44 Altitude factor Sa = 1.04 Distance from the location to the sea = 80	m m					
Site wind speedWind direction = $154^{\circ}\pm 45^{\circ}$ Direction factor Sd = 0.90 Seasonal factor Ss = 1.00 Probability factor Sp = 1.00 Site wind speed Vs = 18.52	m/s					
Dynamic pressure - windward wallEffective height He =8.50Terrain and building factor Sb =1.59Effective wind speed Ve =29.53Dynamic pressure qs =0.535						
Pressure coefficientExternal pressure coefficient cpe =0.85Internal pressure coefficient cpi =-0.30	(Conservative approach) (Conservative approach)					
Size effect factor Size effect factor Ca = 1.00	(Conservative approach)					
Net pressure = 0.615	<u>kN/m^2</u>					

		Beeches,	Long Meado	ow, Goring	g on Thame	s RG89E	G	
REGE proje	C t Subject		Struct	ural Calcu	lations			
In partnership with D & P Solut	tions Calc 23-	ulation Number 1806-C01	Rev B	Des. DL	Chkd. C DK	hkd. DK	Date 21.02.	
ALLOWABLE JOISTS SPAN DUE TO	TRADA (U.N.O.)							
Rafters For Dead Load more than 0.75kN/m2 b Section (RAF): 200 x 50 C24 @40	ut not more than 1.00 kN/m2 00mm c/c 30.0-45.0 deg	; For Imposed Load 0.75 Span 4	kN/m2 .50 m	<=	Allowable Spa	n	4.77 m	ок
IAXIMUM ALLOWABLE CLEAR SPA	N FOR RAFTERS CALCUL	ATED BY ENGINEER. IF	REQUIRED, C	CALCULAT	ONS CAN BE	FORWAR	DED.	
1 I-:-A-								
Floor Joists For floors supporting non loadbearing lig For Dead Load more than 0.50kN/m2 b Section (FJ): 200 x 50 C24 @40	ut not more than 1.25 kN/m2	; For Imposed Load 1.5 k Span 3	N/m2 .80 m	<=	Allowable Spa	n	3.83 m	ок

RF	=CF		Project	Bee	ches, Lor	ng Meado	ow, Goring	g on Tha	imes RG	89EG		
H p r	-) e	c t	Subject			Struct	ural Calcu	lations				
In partnership with	h D & P Solution	ns -	Calculation 23-1806-			Rev B	Des. DL	Chkd. DK	Chkd. DK		Date 21.02.24	
			23-1800-	CUT		В						· · · · · · · · · · · · · · · · · · · ·
TIMBER BEAM T1 (\ 1st dimension in plan 2nd dimension in plan Height =	(A) = 2.30	m :	1st additional loading 2nd additional loadin				0.75 0.00					
Total Beam Span L = Slope =	= 4.13 38.1								B			
Load Roof (sloping) Roof (sloping) Roof (sloping)	Load Positioned from (m) to (m) 0.00 1.38 1.38 2.76 2.76 4.13	Eleme Span/He 6.66 3.99 1.33	eight m / m /	2.00 2.00 2.00	= = =	3.33 2.00 0.67) m		· ·	C •••	A	
UDL LOADING UDL Dead Loading Beam Self Weight Roof (sloping) Roof (sloping) Roof (sloping)	1.00 kN/m2 1.00 kN/m2 1.00 kN/m2	x x x	3.33 m = 2.00 m = 0.67 m =	3.33 2.00 0.67	kN/m kN/m kN/m kN/m	x x x x	1.00 1.00 1.00 1.00	= =	3.33 2.00 0.67	I kN/m 3 kN/m 0 kN/m 7 kN/m 0 kN/m	_	
UDL Imposed Loadi Roof (sloping) Roof (sloping) Roof (sloping)	ing 0.75 kN/m2 0.75 kN/m2 0.75 kN/m2	x x x	3.33 m = 2.00 m = 0.67 m =	1.50 0.50	kN/m kN/m kN/m kN/m	x x x	1.00 1.00 1.00	=	1.50 0.50) kN/m) kN/m) kN/m) kN/m	_	
Ra = unf. DL = unf. IL =	9.59 kN 5.57 kN 4.01 kN	2	J		T		Rb		Rb = Inf. DL = unf. IL =	3.13	1 kN 3 kN 8 kN	
unf. DL = unf. IL = FORCES IN BEAM Moment Shear Force Axial Force	5.57 kN 4.01 kN	Ra Ra kNm kN kN kN	<u>DEFLEC</u> 0.003L <u>DURATI(</u> Medium-t	TION CRITE DN OF LOAI erm (K3 = 1	DING			F (VALLE ion perper ion paralle allel to gra arallel to g	nf. DL = unf. IL = <u>Y RAFTER</u> idicular to g I to grain n rain	3.13 2.18 <u>) (T1)</u>	3 kN	% % %
unf. DL = unf. IL = FORCES IN BEAM Moment Shear Force Axial Force TIMBER BEAM T1 (1	5.57 kN 4.01 kN = 6.11 = 7.54 = 5.91	Ra Ra kNm kN kN kN	DEFLEC 0.003L DURATIO Medium-t Omm C24 of Charact. Compr.	DN OF LOAI erm (K3 = 1 Local Strength yb*fk/ym	DING	Bearing Width	USAGE O Compress Compress Shear para Bending pa Axial comp	F (VALLE ion perper ion paralle allel to gra arallel to g	nf. DL = unf. IL = <u>Y RAFTER</u> dicular to g I to grain n rain d bending	3.1; 2.18 (<u>) (T1)</u> Irain	3 kN 8 kN 25.99 3.30 59.77 46.33 50.08	% % %

 Beam Support Summary:

 T1 (LHS):
 Provide MIN 440x100x215 Concrete Padstone

 T1 (RHS):
 Provide Steel Beam/Column/Timber Post Connection

 Refer To G.A. for more details.

n proje	C † Subject		Struct	ural Calcu	lations		
In partnership with D & P Solutio		ation Number	Rev	Des.	Chkd.	Chkd.	Date
	23-10	06-C01	В	DL	DK	DK	21.02.24
IMBER BEAM T1 (VALLEY RAFTER) -	Properties of 2No 300x50	~~~					
				004			
Depth h = Dverall breadth of member b = Length of bearing lb_l = Length of bearing lb_r = Area of beam A = Min modulus of elasticity Emin = Wodified min modulus of elasticity E = Modulus of rigidity G = Modulus of rigidity G = Moment of inertia ly = Section modulus Zy = Root radius ry = Moment of inertia lz = Root radius rz = Notch n =	295 mm 88 mm 100 mm 25960 mm^2 7.20 GPa 8.21 GPa 0.51 Gpa 18826 cm^4 1276 cm^3 8.52 cm 1675 cm^4 2.54 cm 40.00 mm	K3 = 1.2 K4 = 1.0 K5 = 0.8 K7 = 1.0 K8 = 1.1 K9 = 1.1		erm) tive approa h notch) h ≤ 300mm) ient) voods elemo	ch) ent)	К12)	
Forces in beam							
Moment = 6.11 Shear Force = 7.54 Axial Force = 5.91							
Slenderness ratio Ley = Lez = Slenderness ratio λy = Slenderness ratio λz = Limit of slenderness ratio =	4.13 m 0.76 m 48.53 30.01 250.00	ок					
L ateral support Ends held in position and compression edg ogether with adequate bridging or blockin Permissible depth-to-breadth ratio =							
Lateral support Ends held in position and compression edu together with adequate bridging or blockin Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Compression perpendicular to grain Permissible bearing stress oc_adm =	g spaced at intervals not exc 6.000	eeding six times the depth					
Lateral support Ends held in position and compression edu together with adequate bridging or blockin Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Compression perpendicular to grain Permissible bearing stress σ c_adm = Applied bearing stress σ c_adm = Permissible bearing stress σ c_adm = Applied bearing stress σ c_adm = Applied bearing stress σ c_adm =	g spaced at intervals not exc 6.000 3.352 3.300 N/mm^2	eeding six times the depth					
Lateral support Ends held in position and compression edg ogether with adequate bridging or blockin Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Compression perpendicular to grain Permissible bearing stress σc_adm = Applied bearing stress σc_a = Compression parallel to grain Permissible bearing stress σc_adm =	g spaced at intervals not exc 6.000 3.352 3.300 N/mm^2 0.857 N/mm^2 8.004 N/mm^2	ok OK OK					
Lateral support Ends held in position and compression edu together with adequate bridging or blockin Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Compression perpendicular to grain Permissible bearing stress σ_{c} adm = Applied bearing stress σ_{c} adm = Compression parallel to grain Permissible bearing stress σ_{c} adm = Applied bearing stress σ_{c} adm =	g spaced at intervals not exc 6.000 3.352 3.300 N/mm^2 0.857 N/mm^2 8.004 N/mm^2 0.264 N/mm^2 0.844 N/mm^2	oK OK OK OK					
Lateral support Ends held in position and compression edu together with adequate bridging or blockin Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Compression perpendicular to grain Permissible bearing stress σ_{c} ad = Applied bearing stress σ_{c} ad = Compression parallel to grain Permissible bearing stress σ_{c} ad = Applied bearing stress σ_{c} ad = Shear parallel to grain Permissible shear stress τ_{adm} = Applied shear stress τ_{a} = Bending parallel to grain Permissible bearing stress σ_{m} =	g spaced at intervals not exc 6.000 3.352 3.300 N/mm^2 0.857 N/mm^2 8.004 N/mm^2 0.264 N/mm^2 0.844 N/mm^2 0.504 N/mm^2 10.332 N/mm^2	ok OK OK OK OK					

RF	FGE		Project	Beech	ies, Lon	g Meado	ow, Goring	g on Tha	imes RG	89EG		
H p r	oje	c †	Subject			Struct	ural Calcu	lations				
In partnership with	D & P Solution	ıs	Calculatior 23-1806-			Rev B	Des. DL	Chkd. DK	Chkd. DK		Date 21.02.24	1
TIMBER BEAM T2 (VAI 1st dimension in plan (A 2nd dimension in plan (B Height =	A) = 2.90 r	m :	1st additional loading 2nd additional loading				0.75 0.00		0			
Total Beam Span L = Slope =	5.08 r 36.2 °								B		\mathbf{h}	
Load fro Roof (sloping) (Roof (sloping)	Dad Positioned om (m) to (m) 0.00 1.69 1.69 3.39 3.39 5.08	Eleme Span/He 7.85 4.71 1.57	eight m / m /	2.00 2.00 2.00	= = =	3.93 2.36 0.79	m		· · · · · ·	C M	A	
UDL LOADING UDL Dead Loading Beam Self Weight Roof (sloping) Roof (sloping) Roof (sloping)	1.00 kN/m2 1.00 kN/m2 1.00 kN/m2	x x x	3.93 m = 2.36 m = 0.79 m =	0.16 kM 3.93 kM 2.36 kM 0.79 kM 7.23 kM	V/m V/m V/m	x x x x	1.00 1.00 1.00 1.00	= = =	3.9 2.3 0.7	6 kN/m 3 kN/m 6 kN/m 9 kN/m 3 kN/m	_	
UDL Imposed Loading Roof (sloping) Roof (sloping) Roof (sloping)	0.75 kN/m2 0.75 kN/m2 0.75 kN/m2	x x x	3.93 m = 2.36 m = 0.79 m =	2.95 kM 1.77 kM <u>0.59 kM</u> 5.30 kM	N/m N/m	x x x	1.00 1.00 1.00	= = =	1.7 0.5	95 kN/m 17 kN/m 19 kN/m 1 0 kN/m	_	
Ra = unf. DL = unf. IL =	13.99 kN 8.18 kN 5.82 kN	Ra					Rb		Rb = Inf. DL = unf. IL =	4.6	9 kN 3 kN 6 kN	
unf. DL =	8.18 kN 5.82 kN = 11.25 k = 11.30 k = 8.26 k	Ra kNm kN kN kN	DEFLEC 0.003L DURATIC Medium-to	TION CRITERI DN OF LOADIN erm (K3 = 1.25	NG			F (VALLE on perper on paralle illel to gra arallel to g	INF. DL = unf. IL = INT INT INT INT INT INT INT INT INT INT	4.6 3.1 R) (T2) grain	3 kN	% % %
unf. DL = unf. IL = FORCES IN BEAM Moment Shear Force Axial Force TIMBER BEAM T2 (VAI BEARING CHECK	8.18 kN 5.82 kN = 11.25 k = 11.30 k = 8.26 k	Ra kNm kN kN kN	DEFLECT 0.003L DURATIC Medium-tr 0mm C24	DN OF LOADIN erm (K3 = 1.25 Local 1 Strength yb*fk/ym	NG	Bearing Width mm	USAGE OI Compressi Compressi Shear para Bending pa	F (VALLE on perper on paralle illel to gra arallel to g	nf. DL = unf. IL = <u>Y RAFTEI</u> dicular to grain n rain nd bendinç	4.6 3.1 R <u>) (T2)</u> grain	3 kN 6 kN 3.41 59.65 56.88 60.99	% % %

 Beam Support Summary:

 T2 (LHS):
 Provide MIN 215x100x65 Concrete Padstone

 T2 (RHS):
 Provide Steel Beam/Column/Timber Post Connection

 Refer To G.A. for more details.

n proje	C t Subject		Struct	ural Calcu	lations		
In partnership with	Calavit	tion Number	- Devi	L Dee	Chird		Data
D & P Solution		ation Number 06-C01	Rev B	Des. DL	Chkd. DK	Chkd. DK	Date 21.02.24
IMBER BEAM T2 (VALLEY RAFTER) - I	DESIGN DUE TO BS 5268						
	Properties of 3No 300x50	mm					
Depth h = Dverall breadth of member b =	295 mm 132 mm	Timber grade: Service Class:		C24 1			
ength of bearing lb_l = .ength of bearing lb_r =	100 mm 100 mm	Load Duration:		Medium-te	rm		
Area of beam A =	38940 mm^2	Loadsharing system Depth to Breadth Ra		6			
Ain modulus of elasticity Emin = Aodified min modulus of elasticity E =	7.20 GPa 8.71 GPa	K2 = 1.0	0 (Service c	lass 1)			
Modulus of rigidity G = Moment of inertia Iy =	0.54 Gpa 28240 cm^4		5 (Medium-1 0 (Conserva		ch)		
Section modulus Zy = Root radius ry =	1915 cm^3 8.52 cm	K5 = 0.8	6 (Beam wit 0 (72mm <	h notch)			
Noment of inertia Iz =	5654 cm^4	K8 = 1.1	0 (3No elem	nent)			
Root radius rz = Notch n =	3.81 cm 40.00 mm		1 (3No softv 6 (Table 22			K12)	
Forces in beam							
Moment = 11.25							
Shear Force=11.30Axial Force=8.26							
Slenderness ratio							
_ey = _ez =	5.08 m 0.74 m						
Slenderness ratio λy =	59.67						
Slenderness ratio λz = .imit of slenderness ratio =	19.51 250.00	ок					
_ateral support Ends held in position and compression edg ogether with adequate bridging or blocking							
Ends held in position and compression edg ogether with adequate bridging or blocking Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Compression perpendicular to grain	spaced at intervals not exc 6.000	eeding six times the depth					
Ends held in position and compression edg ogether with adequate bridging or blocking Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio =	spaced at intervals not exc 6.000 2.235	eeding six times the depth					
Ends held in position and compression edg ogether with adequate bridging or blocking Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Compression perpendicular to grain Permissible bearing stress σc_adm = Applied bearing stress σc_a = Compression parallel to grain	spaced at intervals not exc 6.000 2.235 3.300 N/mm^2 0.856 N/mm^2	eeding six times the depth OK					
Ends held in position and compression edg ogether with adequate bridging or blocking Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Compression perpendicular to grain Permissible bearing stress σc_adm = Applied bearing stress σc_a =	spaced at intervals not exc 6.000 2.235 3.300 N/mm^2	eeding six times the depth OK					
Ends held in position and compression edg ogether with adequate bridging or blocking Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Compression perpendicular to grain Permissible bearing stress σ_a adm = Applied bearing stress σ_a a = Compression parallel to grain Permissible bearing stress σ_a adm = Applied bearing stress σ_a adm =	spaced at intervals not exc 6.000 2.235 3.300 N/mm^2 0.856 N/mm^2 7.218 N/mm^2	eeding six times the depth OK OK					
Ends held in position and compression edg ogether with adequate bridging or blocking Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Permissible bearing stress σ_a adm = Applied bearing stress σ_a adm =	spaced at intervals not exc 6.000 2.235 3.300 N/mm^2 0.856 N/mm^2 7.218 N/mm^2 0.245 N/mm^2 0.844 N/mm^2	eeding six times the depth OK OK OK					
Ends held in position and compression edg ogether with adequate bridging or blocking Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Compression perpendicular to grain Permissible bearing stress σc_adm = Applied bearing stress σc_a a Permissible bearing stress σc_adm = Applied bearing stress σc_adm = Applied bearing stress σc_adm = Applied bearing stress σc_a a	spaced at intervals not exc 6.000 2.235 3.300 N/mm^2 0.856 N/mm^2 7.218 N/mm^2 0.245 N/mm^2	eeding six times the depth OK OK					
Ends held in position and compression edg ogether with adequate bridging or blocking Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Permissible bearing stress σ_a adm = Applied shear stress τ_a =	spaced at intervals not exc 6.000 2.235 3.300 N/mm^2 0.856 N/mm^2 7.218 N/mm^2 0.245 N/mm^2 0.844 N/mm^2 0.503 N/mm^2	eeding six times the depth OK OK OK					
Ends held in position and compression edg ogether with adequate bridging or blocking Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Compression perpendicular to grain Permissible bearing stress $\sigma_a dm =$ Applied bearing stress $\sigma_a dm =$ Compression parallel to grain Permissible bearing stress $\sigma_a dm =$ Applied bearing stress $\tau_a dm =$ Applied shear stress $\tau_a dm =$	spaced at intervals not exc 6.000 2.235 3.300 N/mm^2 0.856 N/mm^2 7.218 N/mm^2 0.245 N/mm^2 0.844 N/mm^2	eeding six times the depth OK OK OK					
Ends held in position and compression edg ogether with adequate bridging or blocking Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Permissible bearing stress σ_a and $=$ Applied bearing stress τ_a and $=$ Applied shear stress τ_a and $=$ Applied shear stress τ_a and $=$ Applied shear stress σ_a and $=$ Applied bending stress σ_a and $=$	spaced at intervals not exc 6.000 2.235 3.300 N/mm^2 0.856 N/mm^2 0.245 N/mm^2 0.245 N/mm^2 0.844 N/mm^2 0.503 N/mm^2 10.332 N/mm^2 5.876 N/mm^2	eeding six times the depth OK OK OK OK					
Ends held in position and compression edg ogether with adequate bridging or blocking Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Compression perpendicular to grain Permissible bearing stress σ_a adm = Applied bearing stress σ_a a Permissible shear stress τ_a = Bending parallel to grain Permissible bending stress σ_m_a a Applied bending stress σ_m_a =	spaced at intervals not exc 6.000 2.235 3.300 N/mm^2 0.856 N/mm^2 7.218 N/mm^2 0.245 N/mm^2 0.844 N/mm^2 0.503 N/mm^2 10.332 N/mm^2 10.332 N/mm^2 19.959 N/mm^2	eeding six times the depth OK OK OK OK					
Ends held in position and compression edg ogether with adequate bridging or blocking Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Permissible bearing stress σ_a and $=$ Applied bearing stress τ_a and $=$ Applied shear stress τ_a and $=$ Applied shear stress τ_a and $=$ Applied shear stress σ_a and $=$ Applied bending stress σ_a and $=$	spaced at intervals not exc 6.000 2.235 3.300 N/mm^2 0.856 N/mm^2 0.245 N/mm^2 0.245 N/mm^2 0.844 N/mm^2 0.503 N/mm^2 10.332 N/mm^2 5.876 N/mm^2	eeding six times the depth OK OK OK OK					
Ends held in position and compression edg ogether with adequate bridging or blocking Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Compression perpendicular to grain Permissible bearing stress σ_{c} adm = Applied shear stress τ_{a} = Compressible bending stress σ_{m} adm = Applied bending stress σ_{m} a = Compression and bending Euler critical stress σ_{m} = Euler coefficient = Compression and bending ratio =	spaced at intervals not exc 6.000 2.235 3.300 N/mm^2 0.856 N/mm^2 7.218 N/mm^2 0.245 N/mm^2 0.844 N/mm^2 0.503 N/mm^2 10.332 N/mm^2 5.876 N/mm^2 19.959 N/mm^2 0.988 0.61 ≤ 1.00	eeding six times the depth OK OK OK OK					
Ends held in position and compression edg ogether with adequate bridging or blocking Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Compression perpendicular to grain Permissible bearing stress $\sigma_a dm =$ Applied shear stress $\tau_a =$ Bending parallel to grain Permissible bending stress $\sigma_m_a dm =$ Applied bending s	spaced at intervals not exc 6.000 2.235 3.300 N/mm^2 0.856 N/mm^2 7.218 N/mm^2 0.245 N/mm^2 0.245 N/mm^2 10.332 N/mm^2 10.332 N/mm^2 10.332 N/mm^2 10.332 N/mm^2 10.959 N/mm^2 0.988 0.61 ≤ 1.00 17.58 kN 32450 mm	eeding six times the depth OK OK OK OK					
Ends held in position and compression edg ogether with adequate bridging or blocking Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Compression perpendicular to grain Permissible bearing stress σ_{c} adm = Applied shear stress τ_{a} = Bending parallel to grain Permissible bending stress σ_{m} a = Applied bending stress σ_{m} a = Applied bending stress σ_{m} a = Applied bending stress σ_{m} a = Compression and bending Euler critical stress σ_{e} = Euler coefficient = Compression and bending ratio = Deflection Total dead and imposed load = Shear area for beam Ay = Shear deflection δ_{v} =	spaced at intervals not exc 6.000 2.235 3.300 N/mm^2 0.856 N/mm^2 7.218 N/mm^2 0.245 N/mm^2 0.844 N/mm^2 0.603 N/mm^2 10.332 N/mm^2 10.332 N/mm^2 19.959 N/mm^2 19.959 N/mm^2 0.888 0.61 ≤ 1.00 17.58 kN 32450 mm 5.18 m 0.637 mm	eeding six times the depth OK OK OK OK					
Ends held in position and compression edg ogether with adequate bridging or blocking Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Compression perpendicular to grain Permissible bearing stress σc_adm = Applied shear stress τaf = Beanding parallel to grain Permissible bending stress σm_adm = Applied bending stress σm_adm = Applied bending stress σm_a = Axial compression and bending Euler cortical stress σe = Euler coefficient = Compression and bending ratio = Deflection Fotal dead and imposed load = Shear area for beam Ay = Beam effection δv= Beaming deflection δb=	spaced at intervals not exc 6.000 2.235 3.300 N/mm^2 0.856 N/mm^2 7.218 N/mm^2 0.245 N/mm^2 0.245 N/mm^2 0.844 N/mm^2 0.503 N/mm^2 10.332 N/mm^2 10.332 N/mm^2 10.332 N/mm^2 10.332 N/mm^2 10.58 kN 32450 mm 5.18 m 0.637 mm 12.076 mm	eeding six times the depth OK OK OK OK					
Ends held in position and compression edg ogether with adequate bridging or blocking Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Compression perpendicular to grain Permissible bearing stress σ_{c} adm = Applied shear stress τ_{a} = Bending parallel to grain Permissible bending stress σ_{m} a = Applied bending stress σ_{m} a = Applied bending stress σ_{m} a = Applied bending stress σ_{m} a = Compression and bending Euler critical stress σ_{e} = Euler coefficient = Compression and bending ratio = Deflection Total dead and imposed load = Shear area for beam Ay = Shear deflection δ_{v} =	spaced at intervals not exc 6.000 2.235 3.300 N/mm^2 0.856 N/mm^2 7.218 N/mm^2 0.245 N/mm^2 0.844 N/mm^2 0.603 N/mm^2 10.332 N/mm^2 10.332 N/mm^2 19.959 N/mm^2 19.959 N/mm^2 0.888 0.61 ≤ 1.00 17.58 kN 32450 mm 5.18 m 0.637 mm	eeding six times the depth OK OK OK OK					

			Project	Bee	ches, Lor	ng Meado	ow, Goring	g on Th	ames F	RG89E	G		
H p r	o j e		Subject			Struct	ural Calcu	lations					
In partnership with	D & P Solution		Calculatior 23-1806-			Rev B	Des. DL	Chkd. DK	Chk Dł		;	Date 21.02.24	
TIMBER BEAM T3 (HIP 1st dimension in plan (A 2nd dimension in plan (B Height = Total Beam Span L = Slope =	A) = 2.90	m 2 m	lst additional loading 2nd additional loading				0.00 0.00						
Load fro Roof (sloping) Roof (sloping)	bad Positioned om (m) to (m) 0.00 1.69 1.69 3.39 3.39 5.08	Elemer Span/He 1.39 n 4.17 n 6.95 n	eight / n / n /	2.00 2.00 2.00	= = =	0.70 2.09 3.48	m		•	 C		A	
UDL Dead Loading Beam Self Weight Roof (sloping) Roof (sloping) Roof (sloping)	1.00 kN/m2 1.00 kN/m2 1.00 kN/m2	x x x	0.70 m = 2.09 m = 3.48 m =	0.70 2.09 3.48	kN/m kN/m kN/m kN/m kN/m	x x x x	1.00 1.00 1.00 1.00	= = =		0.16 kN/ 0.70 kN/ 2.09 kN/ 3.48 kN/ 6.42 kN /	/m /m /m		
UDL Imposed Loading Roof (sloping) Roof (sloping) Roof (sloping)	0.75 kN/m2 0.75 kN/m2 0.75 kN/m2	x x x	0.70 m = 2.09 m = 3.48 m =	1.56 2.61	kN/m kN/m kN/m kN/m	x x x	1.00 1.00 1.00	= = =		0.52 kN/ 1.56 kN/ 2.61 kN/ 4.69 kN /	/m /m		
Ra = unf. DL = unf. IL =	6.94 kN 4.15 kN 2.80 kN	Ra	Q Q				Rb		Rb = unf. DL = unf. IL =	=	12.44 7.29 5.15	κN	
Ra = unf. DL = unf. IL = unf. IL = FORCES IN BEAM Moment Shear Force Axial Force TIMBER BEAM T3 (HIP BEARING CHECK	4.15 kN 2.80 kN = 10.04 = 10.04 = 7.34 PRAFTER) = 3No 3	Ra kNm kN kN kN	<u>DEFLEC1</u> 0.003L <u>DURATIC</u> Medium-te	FION CRITE ON OF LOAI erm (K3 = 1	<u>RIA</u> DING		Rb Rb USAGE OI Compressi Shear para Bending pa Axial comp Deflection	<u>F (HIP R)</u> on perpe on paralle illel to gra urallel to g	unf. DL = unf. IL = <u>AFTER)</u> ndicular el to grai in grain	= = (<u>T3)</u> to grain n	7.29 I	23.05 3.03 53.03 50.75 54.33 74.11	% % %
Ra = unf. DL = unf. IL = FORCES IN BEAM Moment Shear Force Axial Force TIMBER BEAM T3 (HIP BEARING CHECK	4.15 kN 2.80 kN = 10.04 = 10.04 = 7.34	Ra kNm kN kN kN	DEFLECT 0.003L DURATIC Medium-to C24 of Charact. Compr.	DN OF LOAI erm (K3 = 1 Strength yb*fk/ym N/mm2	<u>RIA</u> DING	Bearing Width mm	USAGE OI Compressi Compressi Shear para Bending pa Axial comp	<u>F (HIP R)</u> on perpe on paralle illel to gra urallel to g	unf. DL = unf. IL = ndicular - el to grai in grain nd bend	= = to grain n ing one th	7.29 5.15 Ecc	KN KN 23.05 3.03 53.03 50.75 54.33	% % %
Ra = unf. DL = unf. IL = FORCES IN BEAM Moment Shear Force Axial Force TIMBER BEAM T3 (HIP BEARING CHECK	4.15 kN 2.80 kN = 10.04 = 10.04 = 7.34 P RAFTER) = 3No 3 Total //retical Load From kN 10.28	Ra kNm kN kN 300x50mm (DEFLECT 0.003L DURATIC Medium-te C24 of Charact. Compr. ort Strength fk, N/mm2 3.5	DN OF LOAI erm (K3 = 1 Local Strength yb*fk/ym	RIA DING 25) Bearing Length	Bearing Width	USAGE OI Compressi Compressi Shear para Bending pa Axial comp Deflection	E (HIP R/ on perpe on parallel lilel to gra rallel to gr ression a Padstone Length	unf. DL = unf. IL = <u>AFTER)</u> Indicular el to grai in grain ind bend	= = to grain n ing one th	7.29 5.15 Ecc	23.05 3.03 53.03 50.75 54.33 74.11 Stress Below Padstone	% % % %

 Beam Support Summary:

 T3 (LHS):
 Provide Minimum 100mm End Bearing Length

 T3 (RHS):
 Provide Steel Beam/Column/Timber Post Connection

 Refer To G.A. for more details.
 Provide Steel Beam/Column/Timber Post Connection

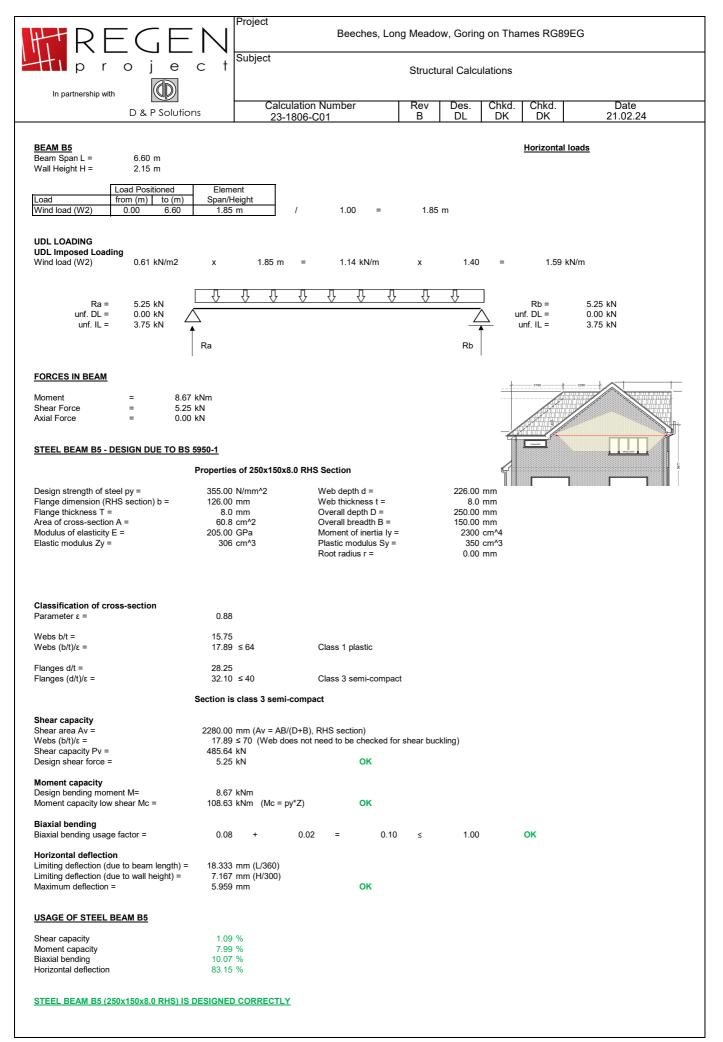
$K \sqcup U \sqcup$	Subject						
proje	C t		Struct	ural Calcu	lations		
In partnership with							
D & P Solutio	00	ulation Number 1806-C01	Rev B	Des. DL	Chkd. DK	Chkd. DK	Date 21.02.24
		1800-001	D		DIX	BR	21.02.24
<u>'IMBER BEAM T3 (HIP RAFTER) - DES</u>		-0					
x	Properties of 3No 300x						
Depth h = Dverall breadth of member b =	295 mm 132 mm	Timber grade: Service Class:		C24 1			
.ength of bearing lb_l = .ength of bearing lb_r =	100 mm 100 mm	Load Duration: Loadsharing syste	m.	Medium-te No	rm		
Area of beam A =	38940 mm^2	Depth to Breadth F		6			
/in modulus of elasticity Emin =	7.20 GPa						
Modified min modulus of elasticity E = Modulus of rigidity G =	8.71 GPa 0.54 Gpa		.00 (Service c .25 (Medium-				
Moment of inertia ly =	28240 cm^4		.00 (Conserva		ch)		
Section modulus Zy =	1915 cm^3	K5 = 0	.86 (Beam wit	h notch)			
Root radius ry = Moment of inertia Iz =	8.52 cm 5654 cm^4		.00 (72mm < .10 (3No elerr)		
Root radius rz =	3.81 cm		.10 (3No elen .21 (3No soft		ent)		
Notch n =	40.00 mm		.66 (Table 22		,	K12)	
Forces in beam							
	kNm						
Shear Force = 10.04							
Axial Force = 7.34	kN						
Slenderness ratio _ey =	5.08 m						
_ey = _ez =	0.74 m						
Slenderness ratio λy =	59.67						
Slenderness ratio λz =	19.51						
imit of slenderness ratio =	250.00						
Lateral support Ends held in position and compression edu		OK connection of sheathing, c	leck or joists,				
Lateral support Ends held in position and compression edge ogether with adequate bridging or blockin Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio =	ge held in line, as by direct	connection of sheathing, c					
Ends held in position and compression edu ogether with adequate bridging or blockin Permissible depth-to-breadth ratio =	ge held in line, as by direct g spaced at intervals not e 6.000	connection of sheathing, c xceeding six times the dep					
Ends held in position and compression edg ogether with adequate bridging or blockin Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Compression perpendicular to grain Permissible bearing stress oc_adm =	ge held in line, as by direct g spaced at intervals not e 6.000 2.235 3.300 N/mm^2	connection of sheathing, c xceeding six times the dep OK					
Ends held in position and compression edu ogether with adequate bridging or blockin Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Compression perpendicular to grain	ge held in line, as by direct g spaced at intervals not e 6.000 2.235	connection of sheathing, c xceeding six times the dep					
Ends held in position and compression edu ogether with adequate bridging or blockin Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Compression perpendicular to grain Permissible bearing stress oc_adm = Applied bearing stress oc_a =	ge held in line, as by direct g spaced at intervals not e 6.000 2.235 3.300 N/mm^2	connection of sheathing, c xceeding six times the dep OK					
Ends held in position and compression edg ogether with adequate bridging or blockin Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Compression perpendicular to grain Permissible bearing stress oc_adm = Applied bearing stress oc_a = Compression parallel to grain Permissible bearing stress oc_adm =	ge held in line, as by direct g spaced at intervals not e 6.000 2.235 3.300 N/mm^2 0.761 N/mm^2 7.218 N/mm^2	connection of sheathing, c xceeding six times the dep OK OK					
Ends held in position and compression edu ogether with adequate bridging or blockin Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Compression perpendicular to grain Permissible bearing stress σc_adm = Applied bearing stress σc_a = Compression parallel to grain	ge held in line, as by direct g spaced at intervals not e 6.000 2.235 3.300 N/mm^2 0.761 N/mm^2	connection of sheathing, c xceeding six times the dep OK					
Ends held in position and compression edu ogether with adequate bridging or blockin Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Compression perpendicular to grain Permissible bearing stress oc_adm = Applied bearing stress oc_a = Compression parallel to grain Permissible bearing stress oc_adm = Applied bearing stress oc_a =	ge held in line, as by direct g spaced at intervals not e 6.000 2.235 3.300 N/mm^2 0.761 N/mm^2 7.218 N/mm^2	connection of sheathing, c xceeding six times the dep OK OK					
Ends held in position and compression edg ogether with adequate bridging or blockin Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Compression perpendicular to grain Permissible bearing stress oc_adm = Applied bearing stress oc_a = Compression parallel to grain Permissible bearing stress oc_adm =	ge held in line, as by direct g spaced at intervals not e 6.000 2.235 3.300 N/mm^2 0.761 N/mm^2 7.218 N/mm^2 0.218 N/mm^2 0.218 N/mm^2	connection of sheathing, c xceeding six times the dep OK OK OK					
Ends held in position and compression edg ogether with adequate bridging or blockin Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Compression perpendicular to grain Permissible bearing stress oc_adm = Applied bearing stress oc_a = Compression parallel to grain Permissible bearing stress oc_adm = Applied bearing stress oc_a = Shear parallel to grain	ge held in line, as by direct g spaced at intervals not e 6.000 2.235 3.300 N/mm^2 0.761 N/mm^2 7.218 N/mm^2 0.218 N/mm^2	connection of sheathing, c xceeding six times the dep OK OK					
Ends held in position and compression edgo ogether with adequate bridging or blockin Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Compression perpendicular to grain Permissible bearing stress σ_{c} adm = Applied bearing stress σ_{c} a = Compression parallel to grain Permissible bearing stress σ_{c} adm = Applied bearing stress σ_{c} adm =	ge held in line, as by direct g spaced at intervals not e 6.000 2.235 3.300 N/mm^2 0.761 N/mm^2 7.218 N/mm^2 0.218 N/mm^2 0.218 N/mm^2	connection of sheathing, c xceeding six times the dep OK OK OK					
Ends held in position and compression edg ogether with adequate bridging or blockin Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Permissible bearing stress σc_adm = Applied bearing stress σc_a =	ge held in line, as by direct g spaced at intervals not e 6.000 2.235 3.300 N/mm^2 0.761 N/mm^2 7.218 N/mm^2 0.218 N/mm^2 0.218 N/mm^2	connection of sheathing, c xceeding six times the dep OK OK OK					
Ends held in position and compression edg ogether with adequate bridging or blockin Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Permissible bearing stress oc_adm = Applied bearing stress oc_a = Shear parallel to grain Permissible shear stress tadm = Applied shear stress tadm = Applied shear stress tadm = Applied shear stress tadm =	ge held in line, as by direct g spaced at intervals not e 6.000 2.235 3.300 N/mm^2 0.761 N/mm^2 7.218 N/mm^2 0.218 N/mm^2 0.844 N/mm^2 0.844 N/mm^2 0.447 N/mm^2	connection of sheathing, c xceeding six times the dep OK OK OK					
Ends held in position and compression edg ogether with adequate bridging or blockin Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Compression perpendicular to grain Permissible bearing stress oc_adm = Applied bearing stress oc_adm = Applied bearing stress oc_adm = Applied bearing stress oc_adm = Applied bearing stress oc_a = Shear parallel to grain Permissible shear stress tadm = Applied shear stress tadm = Applied shear stress tadm = Applied bearing stress om_adm = Applied bending stress om_adm = Applied bending stress om_a =	ge held in line, as by direct g spaced at intervals not e 6.000 2.235 3.300 N/mm^2 0.761 N/mm^2 7.218 N/mm^2 0.218 N/mm^2 0.844 N/mm^2 0.844 N/mm^2 0.447 N/mm^2	connection of sheathing, c xceeding six times the dep OK OK OK					
Ends held in position and compression edg ogether with adequate bridging or blockin Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Permissible bearing stress σc_adm = Applied shear stress τadm = Applied shear stress τadm = Applied shear stress τadm =	ge held in line, as by direct g spaced at intervals not e 6.000 2.235 3.300 N/mm^2 0.761 N/mm^2 7.218 N/mm^2 0.218 N/mm^2 0.844 N/mm^2 0.844 N/mm^2 0.447 N/mm^2	connection of sheathing, c xceeding six times the dep OK OK OK					
Ends held in position and compression edg ogether with adequate bridging or blockin Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Permissible bearing stress σc_adm = Applied shear stress radm = Applied shear stress radm = Applied shear stress radm = Applied bearing stress σm_adm = Applied bending stress σm_a =	ge held in line, as by direct g spaced at intervals not e 6.000 2.235 3.300 N/mm^2 0.761 N/mm^2 7.218 N/mm^2 0.218 N/mm^2 0.844 N/mm^2 0.844 N/mm^2 10.332 N/mm^2 5.243 N/mm^2	connection of sheathing, o xceeding six times the dep OK OK OK OK OK					
Ends held in position and compression edgogether with adequate bridging or blockin Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Compression perpendicular to grain Permissible bearing stress σc_adm = Applied bearing stress σc_a = Compression parallel to grain Permissible bearing stress σc_a = Shear parallel to grain Permissible shear stress tadm = Applied shear stress tadm = Applied shear stress tadm = Applied shear stress om_adm = Applied bending stress om_adm = Applied bending stress om_a = Compression and bending Euler critical stress σe =	ge held in line, as by direct g spaced at intervals not e 6.000 2.235 3.300 N/mm^2 0.761 N/mm^2 7.218 N/mm^2 0.218 N/mm^2 0.844 N/mm^2 0.844 N/mm^2 10.332 N/mm^2 5.243 N/mm^2	connection of sheathing, c xceeding six times the dep OK OK OK					
Ends held in position and compression edgo ogether with adequate bridging or blockin Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Compression perpendicular to grain Permissible bearing stress σc_adm = Applied bearing stress σc_a = Compression parallel to grain Permissible bearing stress σc_adm = Applied bearing stress σc_a = Shear parallel to grain Permissible shear stress tadm = Applied shear stress tadm = Applied shear stress tadm = Applied shear stress om_adm = Applied bending stress om_adm = Applied bending stress om_a = Compression and bending Euler coefficient = Compression and bending ratio =	ge held in line, as by direct g spaced at intervals not e 6.000 2.235 3.300 N/mm^2 0.761 N/mm^2 0.218 N/mm^2 0.218 N/mm^2 0.844 N/mm^2 0.844 N/mm^2 10.332 N/mm^2 10.332 N/mm^2 19.959 N/mm^2 0.989	connection of sheathing, o xceeding six times the dep OK OK OK OK OK					
Ends held in position and compression edgo ogether with adequate bridging or blockin Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Compression perpendicular to grain Permissible bearing stress σ_{c} adm = Applied bearing stress σ_{m} adm = Applied shear stress σ_{m} adm = Applied bending stress σ_{m} a = Axial compression and bending Euler critical stress σ_{e} =	ge held in line, as by direct g spaced at intervals not e 6.000 2.235 3.300 N/mm^2 0.761 N/mm^2 0.218 N/mm^2 0.218 N/mm^2 0.844 N/mm^2 0.844 N/mm^2 10.332 N/mm^2 10.332 N/mm^2 19.959 N/mm^2 0.989	connection of sheathing, o xceeding six times the dep OK OK OK OK OK					
Ends held in position and compression edgogether with adequate bridging or blockin Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Compression perpendicular to grain Permissible bearing stress oc_adm = Applied bearing stress oc_a = Shear parallel to grain Permissible shear stress tadm = Applied shear stress tadm = Applied bending stress om_adm = Applied bending stress om_adm = Applied bending stress om_a = Axial compression and bending Euler coefficient = Compression and bending ratio = Deflection Total dead and imposed load = Shear area for beam Ay =	ge held in line, as by direct g spaced at intervals not e 6.000 2.235 3.300 N/mm^2 0.761 N/mm^2 7.218 N/mm^2 0.218 N/mm^2 0.218 N/mm^2 0.844 N/mm^2 0.447 N/mm^2 10.332 N/mm^2 5.243 N/mm^2 19.959 N/mm^2 0.989 0.54 ≤ 1.00	connection of sheathing, o xceeding six times the dep OK OK OK OK OK					
Ends held in position and compression edgogether with adequate bridging or blockin Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Actual depth-to-breadth ratio = Compression perpendicular to grain Permissible bearing stress oc_adm = Applied bearing stress oc_a = Compression parallel to grain Permissible bearing stress oc_adm = Applied bearing stress oc_a = Shear parallel to grain Permissible shear stress tadm = Applied shear stress tadm = Applied bending stress om_adm = Applied bending stress om_adm = Applied bending stress om_a = Applied bending stress om_a = Applied bending stress om_adm = Applied bending stress om_a = Applied bend	ge held in line, as by direct g spaced at intervals not e 6.000 2.235 3.300 N/mm^2 0.761 N/mm^2 7.218 N/mm^2 0.218 N/mm^2 0.844 N/mm^2 0.844 N/mm^2 0.447 N/mm^2 10.332 N/mm^2 5.243 N/mm^2 19.959 N/mm^2 0.989 0.54 ≤ 1.00 15.64 kN 32450 mm 5.18 m	connection of sheathing, o xceeding six times the dep OK OK OK OK OK					
Ends held in position and compression edgogether with adequate bridging or blockin Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Compression perpendicular to grain Permissible bearing stress oc_adm = Applied bearing stress oc_a = Shear parallel to grain Permissible shear stress tadm = Applied shear stress tadm = Applied bending stress om_adm = Applied bending stress om_adm = Applied bending stress om_a = Axial compression and bending Euler coefficient = Compression and bending ratio = Deflection Total dead and imposed load = Shear area for beam Ay =	ge held in line, as by direct g spaced at intervals not e 6.000 2.235 3.300 N/mm^2 0.761 N/mm^2 7.218 N/mm^2 0.218 N/mm^2 0.218 N/mm^2 0.844 N/mm^2 0.447 N/mm^2 10.332 N/mm^2 5.243 N/mm^2 19.959 N/mm^2 0.989 0.54 ≤ 1.00	connection of sheathing, o xceeding six times the dep OK OK OK OK OK					
Ends held in position and compression edgogether with adequate bridging or blockin Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Compression perpendicular to grain Permissible bearing stress σc_adm = Applied bearing stress σc_adm = Applied bearing stress σc_adm = Applied bearing stress σc_adm = Applied bearing stress σc_a = Shear parallel to grain Permissible shear stress tadm = Applied shear stress tadm = Applied bearing stress σm_adm = Applied bearing stress om_adm = Applied shear stress tadm = Applied bending stress om_adm = Applied bending stress om_adm = Applied bending stress om_a = Bending parallel to grain Permissible bending stress om_adm = Applied bending stress om_a = Deflection Total dead and imposed load = Shear area for beam Ay = Beanding deflection δv= Shear deflection δv= Total deflection δa= Total deflection δa=	ge held in line, as by direct g spaced at intervals not e 6.000 2.235 3.300 N/mm^2 0.761 N/mm^2 7.218 N/mm^2 0.218 N/mm^2 0.218 N/mm^2 0.844 N/mm^2 0.844 N/mm^2 0.844 N/mm^2 10.332 N/mm^2 10.332 N/mm^2 10.332 N/mm^2 10.959 N/mm^2 0.989 0.54 ≤ 1.00 15.64 kN 32450 mm 5.18 m 0.568 mm 10.729 mm 11.297 mm	connection of sheathing, c xceeding six times the dep OK OK OK OK OK					
Ends held in position and compression edg ogether with adequate bridging or blockin Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Compression perpendicular to grain Permissible bearing stress σc_adm = Applied bearing stress σc_adm = Applied bearing stress σc_adm = Applied bearing stress σc_adm = Applied bearing stress σc_a = Compression parallel to grain Permissible bearing stress σc_a = Shear parallel to grain Permissible shear stress tadm = Applied shear stress tadm = Applied bearing stress σm_adm = Applied bearing stress σm_adm = Applied bearing stress σm_a = Compression and bending Euler coefficient = Compression and bending ratio = Deflection Fotal dead and imposed load = Shear area for beam Ay = Beam effective span leff = Shear deflection δb=	ge held in line, as by direct g spaced at intervals not e 6.000 2.235 3.300 N/mm^2 0.761 N/mm^2 7.218 N/mm^2 0.218 N/mm^2 0.218 N/mm^2 0.844 N/mm^2 0.844 N/mm^2 0.844 N/mm^2 10.332 N/mm^2 10.332 N/mm^2 10.332 N/mm^2 10.959 N/mm^2 10.989 0.54 ≤ 1.00 15.64 kN 32450 mm 5.18 m 0.568 mm 10.729 mm	connection of sheathing, o xceeding six times the dep OK OK OK OK OK					
Ends held in position and compression edgogether with adequate bridging or blockin Permissible depth-to-breadth ratio = Actual depth-to-breadth ratio = Compression perpendicular to grain Permissible bearing stress σc_adm = Applied bearing stress σc_adm = Applied bearing stress σc_adm = Applied bearing stress σc_adm = Applied bearing stress σc_a = Shear parallel to grain Permissible shear stress tadm = Applied shear stress tadm = Applied bearing stress σm_adm = Applied bearing stress om_adm = Applied shear stress tadm = Applied bending stress om_adm = Applied bending stress om_adm = Applied bending stress om_a = Bending parallel to grain Permissible bending stress om_adm = Applied bending stress om_a = Deflection Total dead and imposed load = Shear area for beam Ay = Beanding deflection δv= Shear deflection δv= Total deflection δa= Total deflection δa=	ge held in line, as by direct g spaced at intervals not e 6.000 2.235 3.300 N/mm^2 0.761 N/mm^2 7.218 N/mm^2 0.218 N/mm^2 0.218 N/mm^2 0.844 N/mm^2 0.447 N/mm^2 10.332 N/mm^2 10.332 N/mm^2 19.959 N/mm^2 0.989 0.54 ≤ 1.00 15.64 kN 32450 mm 5.18 m 0.568 mm 10.729 mm 11.297 mm 15.244 mm (0.003L)	connection of sheathing, c xceeding six times the dep OK OK OK OK OK					

RF	- Ge		ject	Bee	ches, Lo	ng Mead	low, Gor	ing on Tl	hames RG	89EG	
p r	oje	C T	oject			Struc	tural Cal	culations	6		
In partnership with	D & P Solutio	ons	Calculat 23-180	tion Number)6-C01		Rev B	Des. DL	Chko DK		Dat 21.02	
LINTEL L1. Clear Span L = Total Span = Effective Span =	2.00 m 2.30 m 2.15 m		(Calcu	ılated For Loa	ding Purp	oses Onl <u>i</u>	()				
	Load Positioned from (m) to (m) 0.00 2.00 0.00 2.00 0.00 2.00 0.00 2.00 0.00 2.00 0.00 2.00 0.00 2.00 0.00 2.00 0.00 2.00 0.00 2.00	Element Span/Height 2.80 m 5.40 m 0.00 m 0.00 m 0.00 m 0.00 m	 	1.00 2.00 1.00 1.00	= =	2.7 0.0 0.0	30 m 70 m 10 m 10 m				
UDL LOADING UDL Dead Loading											
215mm/Cavity Wall Roof (sloping) - - - - -	4.20 kN/m2 1.00 kN/m2 0.00 kN/m2 0.00 kN/m2 0.00 kN/m2 0.00 kN 0.00 kN	X X X X / /	2.70 m = 0.00 m = 0.00 m = 0.00 m =	= 2.70 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00	kN/m kN/m kN/m kN/m kN/m kN/m kN/m	-					
UDL Imposed Loadii 215mm/Cavity Wall Roof (sloping) - - - -	ng 0.00 kN/m2 0.75 kN/m2 0.00 kN/m2 0.00 kN/m2 0.00 kN/m2 0.00 kN 0.00 kN	X X X X /	2.70 m = 0.00 m = 0.00 m = 0.00 m = 0.00 m =	= 2.03 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00	kN/m kN/m kN/m kN/m kN/m kN/m kN/m	-					
Ra = unf. DL = unf. IL =	16.49 kN 14.46 kN 2.03 kN 2	Ra □	<u>0</u>	<u>} (} (</u>	<u>3 </u>	<u>.</u>	- Rt		Rb = unf. DL = unf. IL =	16.49 kN 14.46 kN 2.03 kN	
	Standard Duty	Standard length Increments up t lengths from 30 CCG90/100 Standard leng SWL 1:1/3:1 (k Weight (kg/m) Nominal heigh	o 3000mm, 300 00mm to 3600 (ths (mm) 1 N)	0mm at	1950- 2100 20 8.3 160	2250- 2400 22 8.9 180	88 2550- 2700 26 10.2 220	95 2850- 3600 26 13.0 220	_		

RE	EGE	Proje	ect	Beeches, Lo	ng Meadow,	Goring on Th	ames RG89EG	
h p r		C t	ect		Structura	l Calculations		
In partnership wit	D & P Solution	s	Calculation I 23-1806-C		Rev B	Des. Chkd DL DK	. Chkd. DK	Date 21.02.24
<u>BEAM EB1</u> Beam Span L =	4.30 m		(Calculated	I For Loading Purp	oses Only)			
Load 100mm Thick Wall - - - - - - -	Load Positioned from (m) to (m) 0.00 4.30 0.00 4.30 0.00 4.30 0.00 4.30 0.00 4.30 0.00 4.30 0.00 4.30 0.00 4.30 0.00 4.30 0.00 4.30	Element Span/Height 2.50 m 0.00 m 0.00 m 0.00 m 0.00 m 0.00 m	/ / / /	1.00 = 1.00 = 1.00 = 1.00 =	2.50 m 0.00 m 0.00 m 0.00 m 0.00 m			
UDL LOADING UDL Dead Loading 100mm Thick Wall	2.10 kN/m2 0.00 kN/m2		2.50 m = 0.00 m =	5.25 kN/m 0.00 kN/m	x ×	1.40 = 1.40 =	7.35 kN/m 0.00 kN/m	
-	0.00 kN/m2 0.00 kN/m2 0.00 kN/m2 0.00 kN 0.00 kN	x x /	0.00 m = 0.00 m = 0.00 m = 0.00 m = 0.00 m =	0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 5.25 kN/m	X X X X X	1.40 = 1.40 = 1.40 = 1.40 = 1.40 =	0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 7.35 kN/m	
UDL Imposed Load 100mm Thick Wall - - - -	ing 0.00 kN/m2 0.00 kN/m2 0.00 kN/m2 0.00 kN/m2 0.00 kN/m2 0.00 kN 0.00 kN	x x x /	2.50 m = 0.00 m = 0.00 m = 0.00 m = 0.00 m = 0.00 m =	0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m	x × × × × ×	1.60 = 1.60 = 1.60 = 1.60 = 1.60 = 1.60 = 1.60 =	0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m	
Point Load P1 @ From Beam = DL = IL =		1.40 =	x (MAX) 2.00 kN 2.00 kN	Point Loa From Bea DL IL		0.00 m 1.00 x (MAX) 0.00 kN x 0.00 kN x		0.00 kN 0.00 kN
Point Load P3 @ From Beam = DL = IL =	0.00 m 1.00 x (MAX) + 1.0 0.00 kN x 0.00 kN x	1.40 =	x (MAX) 0.00 kN 0.00 kN					
Ra = unf. DL = unf. IL =	15.80 kN 11.29 kN 0.00 kN	Ra	<u>\$</u>	<u>\$ \$ \$</u>	<u>0 (</u>	Rb	unf. DL = 1	5.80 kN 1.29 kN 0.00 kN

n pr	_ ∖ ∟ ∘ į e	- I N C T	ect					
					Structur	al Calculatio	ons	
In partnership wit	D & P Solutio	ins	Calculation 23-1806-0		Rev B		nkd. Chkd. DK DK	Date 21.02.24
EAM B1 eam Span L =	3.05 m							
	Load Positioned	Element						
oad loof (sloping)	from (m) to (m) 0.00 2.30 0.00 3.05	Span/Height 2.00 m 0.00 m	/	2.00 = 1.00 = 1.00 =	1.00 n	n		
	0.00 3.05 0.00 3.05 0.00 3.05	0.00 m 0.00 m 0.00 m	/ /	1.00 = 1.00 = 1.00 =	0.00 r 0.00 r 0.00 r	n		
	0.00 3.05 0.00 3.05	0.00 m 0.00 m						
DL LOADING DL Dead Loading eam Self Weight				0.23 kN/m		1.40	= 0.32 kN/m	
coof (sloping)	1.00 kN/m2 0.00 kN/m2	х (1.00 m =	1.00 kN/m 0.00 kN/m	x x x	1.40 1.40	= 1.40 kN/m = 0.00 kN/m	
	0.00 kN/m2 0.00 kN/m2 0.00 kN/m2	x (x (0.00 m = 0.00 m = 0.00 m =	0.00 kN/m 0.00 kN/m 0.00 kN/m	x x x	1.40 1.40	= 0.00 kN/m = 0.00 kN/m = 0.00 kN/m	
	0.00 kN 0.00 kN		0.00 m = 0.00 m =	0.00 kN/m 0.00 kN/m 1.23 kN/m	x x		= 0.00 kN/m = 0.00 kN/m 1.72 kN/m	
DL Imposed Load oof (sloping)	ling 0.75 kN/m2	x	1.00 m =	0.75 kN/m	x	1.60	= 1.20 kN/m	
	0.00 kN/m2 0.00 kN/m2 0.00 kN/m2	x (x (0.00 m = 0.00 m = 0.00 m =	0.00 kN/m 0.00 kN/m 0.00 kN/m	x x x	1.60 1.60	= 0.00 kN/m = 0.00 kN/m = 0.00 kN/m	
	0.00 kN/m2 0.00 kN	x (0.00 m = 0.00 m =	0.00 kN/m 0.00 kN/m	X X	1.60 1.60	= 0.00 kN/m = 0.00 kN/m	
	0.00 kN	/	0.00 m =	0.00 kN/m 0.75 kN/m	x	1.60	= 0.00 kN/m 1.20 kN/m	
oint Load P1 @ rom Beam =	2.30 m 2.00 x T1(MIN) +	1.00 x (MAX) + 1.0		Point Loa From Bea		0.00 m 1.00 x (MAX	<i>(</i>)	
L = - =	6.26 kN x	1.40 = 8	8.76 kN 6.97 kN	DL IL	=	0.00 kN 0.00 kN	x 1.40 =	0.00 kN 0.00 kN
rom Beam =	0.00 kN x		1 x (MAX) 0.00 kN 0.00 kN					
_ =	0.00 KIN X							
	0.00 KW X				P1			
	0.00 Kiy X			[P1			
- = Ra =	8.08 kN			 مراجع میں اور میں اور میں	Ţ	<u></u>		4.61 kN 5 94 kN
_ =	8.08 kN 3.32 kN	 ∑ ₽a	• •	口 口 Tot applied to entire sp	Ţ		unf. DL =	4.61 kN 5.94 kN 3.94 kN
Ra = unf. DL = unf. IL =	8.08 kN 3.32 kN	 ∕ Ra	UDL load is r	not applied to entire sp	Ţ		unf. DL = unf. IL =	5.94 kN 3.94 kN
Ra = unf. DL = unf. IL = <u>ORCES IN BEAM</u> Ioment	8.08 kN 3.32 kN 2.15 kN ∠ = 10.85	j 5 kNm	UDL load is r DEFLECT L/250 (all	ION CRITERIA	Ţ	<u>USA</u> She	unf. DL = unf. IL = GE OF STEEL BEAM I ar capacity	5.94 kN 3.94 kN <u>B1</u> 7.76 %
Ra = unf. DL = unf. IL = ORCES IN BEAM	8.08 kN 3.32 kN 2.15 kN	 5 kNm 1 kN	UDL load is r DEFLECT L/250 (all	ION CRITERIA	Ţ	<u>USA</u> She Mon Bucl	unf. DL = unf. IL =	5.94 kN 3.94 kN <u>B1</u> 7.76 % 18.64 %
Ra = unf. DL = unf. IL = ORCES IN BEAM Ioment hear Force xial Force TEEL BEAM B1 =	8.08 kN 3.32 kN 2.15 kN ∠ = 10.85 = 14.61	 5 kNm 1 kN 0 kN	UDL load is r DEFLECT L/250 (all	ION CRITERIA	Ţ	<u>USA</u> She Mon Bucl	unf. DL = unf. IL = GE OF STEEL BEAM I ar capacity ient capacity ding resistance moment	5.94 kN 3.94 kN <u>B1</u> 7.76 % 18.64 % 5. 27.79 %
Ra = unf. DL = unf. IL = ORCES IN BEAM Ioment hear Force xial Force Xial Force	8.08 kN 3.32 kN 2.15 kN = 10.85 = 14.61 = 0.00 152 x 152 x 23 UKC	5 kNm 1 kN 0 kN <u>S355</u>	UDL load is r DEFLECT L/250 (all L/360 (imj	ION CRITERIA ION CRITERIA Ioads) posed loads only)	Dan Bearing	USA She Mon Buci Vert	unf. DL = unf. IL = GE OF STEEL BEAM I ar capacity rent capacity ding resistance moment ical deflection stone Padstone Ec	5.94 kN 3.94 kN <u>B1</u> 7.76 % 18.64 % 27.79 % 20.05 % c Stress
Ra = unf. DL = unf. IL = ORCES IN BEAM Ioment hear Force xial Force TEEL BEAM B1 =	8.08 kN 3.32 kN 2.15 kN = 10.85 = 14.61 = 0.00 152 x 152 x 23 UKC	 5 kNm 1 kN 0 kN	UDL load is r DEFLECT L/250 (all L/360 (im	Local Bearing Strength Vortext	Dan	USA She Mon Bucl Vert Stress Below Bearing	unf. DL = unf. IL = GE OF STEEL BEAM I ar capacity tent capacity kling resistance moment ical deflection	5.94 kN 3.94 kN B1 7.76 % 18.64 % 27.79 % 20.05 % c Stress Below Padstone Summa
Ra = unf. DL = unf. IL = ORCES IN BEAM Ioment hear Force xial Force TEEL BEAM B1 = EARING CHECK	8.08 kN 3.32 kN 2.15 kN ∠ = 10.85 = 14.61 = 0.00 152 x 152 x 23 UKC Vertical Load	5 kNm 1 kN 0 kN <u>S355</u> Type of	UDL load is r DEFLECT L/250 (all L/360 (implement) Charact. Compr. Strength fk, N/mm2 3.5	Local Bearing Voral Length Length	Bearing Width	USA She Mon Buci Vert Stress Below Le Bearing N/mm2 r	unf. DL = unf. IL = GE OF STEEL BEAM I ar capacity ting resistance moment ical deflection stone Padstone Ec Width Ec	5.94 kN 3.94 kN B1

	Project Beeches, Lo	ng Meadow, Goring on Th	names RG89EG	
	Subject			
		Structural Calculations	i	
In partnership with D & P Solutions	Calculation Number	Rev Des. Chkd		Date
	23-1806-C01	B DL DK	DK	21.02.24
STEEL BEAM B1 - DESIGN DUE TO BS 5950-1				
Properti	es of 152 x 152 x 23 UKC Section			
Half of flange b =76.1Flange thickness T =6Area of cross-section A =29Rad of gyration (minor axis) r = 3.7 Modulus of elasticity E =205.0	10 N/mm ² Total beam span L = 0 mm Web depth d = .8 mm Web thickness t = .2 cm ² Overall depth D = '0 cm Overall breadth B = 0 GPa Moment of inertia lx 14 cm ³ Plastic modulus Sx = Root radius r = Root radius r =	3.05 m 123.60 mm 5.8 mm 152.4 mm 152.2 mm 1250 cm^4 182 cm^3 7.60 mm		
Forces in beam	Beam bearing desi	n details		
Moment=10.85 kNmShear Force=14.61 kNAxial Force=0.00 kN	Restraint Condition (Restraint Condition (
Classification of cross-section Parameter ε = 0.86	30			
Web d/t = 21.3 Web (d/t)/ε = 24.2	31 21 ≤ 80 Class 1 plastic			
Flanges b/t =11.1Flanges (b/t)/ ϵ =12.7	9 2 ≤ 15 Class 3 semi-compa	t		
Section	is class 3 semi-compact			
Web (d/t)/ε = 24.2	02 mm (Av = tD, UC section) 21 ≤ 70 (Web does not need to be checked f 27 kN	r shear buckling)		
Design shear force = 14.6	ot kN OK			
0 0	35 kNm 22 kNm (Mc = py*Z) OK			
Effective length for lateral-torsional buckling Total Beam Span = 305	50 mm			
	60 mm			
Equivalent slenderness Buckling parameter u = 0.84 Torsional index x = 20 Slenderness factor v = 0.82 Ratio βw = 0.90 Equivalent slenderness λLT = 65.2 Limiting slenderness $\lambda L0$ = 30.2 $\lambda LT > \lambda L0$ (Allowance should be made for latera	.6 26 27 27 20			
Bending strenght Bending strenght pb = 238.0	9 N/mm^2 (With Table 16)			
Buckling resistance moment Mb = 39.0	00 (Conservative approach) 55 kNm OK			
	00 mm (L/250) 15 mm OK			
	⁷ 2 mm (L/360) 4 mm OK			
<u>STEEL BEAM B1 = 152 x 152 x 23 UKC</u>				


tipr	oje	C 1 Subje	ect			<u> </u>	10.1					
In partnership wit						Structu	ural Calcu	lations				
	D & P Solutio	ns	Calculatior 23-1806-			Rev B	Des. DL	Chkd. DK	Chkd. DK		Date 21.02.24	1
EAM B2 eam Span L =	3.70 m											
	Load Positioned	Element										
oad toof (sloping)	from (m) to (m) 0.75 3.05 0.00 3.70	Span/Height 2.50 m 0.00 m	1	2.00 1.00	=	1.25 0.00						
	0.00 3.70 0.00 3.70 0.00 3.70	0.00 m 0.00 m 0.00 m	/	1.00 1.00 1.00	= = =	0.00 0.00 0.00	m m					
	0.00 3.70 0.00 3.70 0.00 3.70	0.00 m 0.00 m	/	1.00	-	0.00	111					
IDL LOADING												
DL Dead Loading eam Self Weight loof (sloping)	1.00 kN/m2	x 1	.25 m =		kN/m kN/m	x x	1.40 1.40	= =	0.42 k 1.75 k			
	0.00 kN/m2 0.00 kN/m2 0.00 kN/m2	x C	.00 m = .00 m = .00 m =	0.00	kN/m kN/m kN/m	x x x	1.40 1.40 1.40	= = =	0.00 k 0.00 k 0.00 k	:N/m		
	0.00 kN/m2 0.00 kN	x C / C	.00 m =	0.00 0.00	kN/m kN/m	X X	1.40 1.40	=	0.00 k 0.00 k	:N/m :N/m		
	0.00 kN	/ 0	.00 m =		kN/m kN/m	X	1.40	=	0.00 k 2.17 k			
DL Imposed Load	0.75 kN/m2		.25 m =		kN/m	x	1.60	=	1.50 k			
	0.00 kN/m2 0.00 kN/m2 0.00 kN/m2	X C	.00 m = .00 m = .00 m =	0.00	kN/m kN/m kN/m	x x x	1.60 1.60 1.60	= = =	0.00 k 0.00 k 0.00 k	:N/m		
	0.00 kN/m2 0.00 kN	x 0 / 0	.00 m =	0.00 0.00	kN/m kN/m	X X	1.60 1.60	=	0.00 k 0.00 k	:N/m :N/m		
	0.00 kN	/ (.00 m =		kN/m kN/m	X	1.60	=	0.00 k 1.50 k			
oint Load P1 @	0.75 m				Point Loa		3.05					
rom Beam = 0L = - =	9.26 kN x		0 x (MAX) 96 kN 11 kN		From Bea DL IL	m = = =	2.00 x 14.57 10.31		1.40 = 1.60 =	20.40 16.49		
Point Load P3 @ rom Beam =		00 x (MAX) + 1.00										
L = - =	0.00 kN x 0.00 kN x	1.40 = 0 1.60 = 0	.00 kN .00 kN									
		P1]			P2						
Ra = unf. DL =			UDL load is	ۍ بې ل	}_ Io optiro or	Ţ	Ŷ	۰. ۱.	Rb = nf. DL =	39.70		
uni. DL = unf. IL =			UDL load is	not applied i		an			unf. IL =	15.92 10.88		
		Ra					Rb					
ORCES IN BEAM	= 26.59	kNm	DEFLEC	Ioads)	<u>RIA</u>			USAGE O	OF STEEL BE	<u>AM B2</u>	18.20	%
shear Force xial Force	= 39.70 = 0.00) kN		posed loads	s only)			Moment c	apacity esistance mo	ment	30.21 46.06 52.62	% %
TEEL BEAM B2 =	152 x 152 x 30 UKC	<u>S355</u>						verucarde	5118611011		52.62	70
EARING CHECK												
Beam No	Total Vertical Load	Type of Support	Charact. Compr. Strength	Local Strength γb*fk/γm	Bearing Length	Bearing Width	Stress Below Bearing	Padstone Length	Padstone Width	Ecc	Stress Below Padstone	Summa
B2 (LHS):	From kN B2 29.29		fk, N/mm2		mm	mm	N/mm2	mm	mm	mm	N/mm2	
B2 (LHS): B2 (RHS):	B2 29.29 B2 39.70	Beam Connection 3.6N Blocks	3.5	1.25xfk/3.5 1.25	100	152.9	2.60	440	100	0	0.90	Satisfact
									aring design			

REGE	Project	Beeches, Long	g Meadov	w, Gorinę	l on Thai	nes RG89E	G
proje	C T Subject		Structu	ral Calcu	lations		
In partnership with	Calculat	tion Number	Rev	Des.	Chkd.	Chkd.	Date
D & P Solution	^{1S} 23-180	06-C01	В	DL	DK	DK	21.02.24
STEEL BEAM B2 - DESIGN DUE TO BS 5	<u>5950-1</u>						
	Properties of 152 x 152 x 3	0 UKC Section					
Design strength of steel py = Half of flange b = Flange thickness T = Area of cross-section A = Rad of gyration (minor axis) r = Modulus of elasticity E = Elastic modulus Zx =	355.00 N/mm^2 76.45 mm 9.4 mm 38.3 cm^2 3.83 cm 205.00 GPa 222 cm^3	Total beam span L = Web depth d = Web thickness t = Overall depth D = Overall breadth B = Moment of inertia Ix = Plastic modulus Sx = Root radius r =		3.70 123.60 6.5 157.6 152.9 1750 248 7.60	mm mm mm cm^4 cm^3		
Forces in beam		Beam bearing design	details				
Moment=26.59Shear Force=39.70Axial Force=0.00	kN	Restraint Condition Co Restraint Condition Co			1.0 + 2 x E 1.0 + 2 x E		
Classification of cross-section Parameter ϵ =	0.880						
Web d/t = Web (d/t)/ε =	19.02 21.60 ≤ 80	Class 1 plastic					
Flanges b/t = Flanges (b/t)/ε =	8.13 9.24 ≤ 10	Class 2 compact					
	Section is class 2 compact	t					
Shear capacity Shear area Av = Web ($d(t)/\epsilon$ = Shear capacity Pv =	1024.40 mm (Av = tD, UC 21.60 ≤ 70 (Web does 218.20 kN	section) not need to be checked for	shear buck	(ling)			
Design shear force =	39.70 kN	ОК					
Moment capacity Design bending moment M= Moment capacity low shear Mc =	26.59 kNm 88.04 kNm	ок					
Effective length for lateral-torsional buck Total Beam Span =	kling 3700 mm						
Effective length Le = Slenderness ratio λ =	4015 mm 104.84						
Equivalent slenderness Buckling parameter u = Torsional index x = Slenderness factor v = Ratio βw =	0.847 16.1 0.752 1.000						
Equivalent slenderness λLT = Limiting slenderness λL0 = λLT > λL0 (Allowance should be made f	66.81 30.20 or lateral-torsional bucklin	a)					
Bending strenght Bending strenght ρb =	232.84 N/mm^2 (With Ta						
Buckling resistance moment Equivalent uniform moment factor mLT = Buckling resistance moment Mb = Design bending moment	1.00 (Conservative ap 57.74 kNm 26.59 kNm	proach) OK					
Vertical dead & imposed load deflection Limiting deflection = Maximum deflection =	14.800 mm (L/250) 7.787 mm	ок					
Vertical imposed load deflection Limiting deflection = Maximum deflection =	10.278 mm (L/360) 3.136 mm	ок					
<u>STEEL BEAM B2 = 152 x 152 x 30 UKC</u>							

		C t	bject				g on Tha				
In partnership with	oje	C t			Struct	ural Calcu	llations				
in partnersnip with	D & P Solutio	ins	Calculation 23-1806-0		Rev B	Des. DL	Chkd. DK	Chkd. DK		Date 21.02.24	Ļ
BEAM B3 Beam Span L =	5.80 m										
Г	Load Positioned	Element]								
.oad Roof (sloping)	from (m) to (m) 0.00 5.80 0.00 5.80 0.00 5.80 0.00 5.80 0.00 5.80 0.00 5.80 0.00 5.80 0.00 5.80 0.00 5.80 0.00 5.80 0.00 5.80	Span/Heigh 5.60 m 0.00 m	/ / / / / / / / / / / / / / / / / / /	2.00 = 1.00 = 1.00 = 1.00 = 1.00 =	2.80 0.00 0.00 0.00 0.00) m) m) m					
JDL LOADING JDL Dead Loading Beam Self Weight				0.60 kN/m	x	1.40	=		kN/m		
coof (sloping)	1.00 kN/m2 0.00 kN/m2 0.00 kN/m2	X X X	2.80 m = 0.00 m = 0.00 m =	2.80 kN/m 0.00 kN/m 0.00 kN/m	x × ×	1.40 1.40 1.40	=	0.00	kN/m kN/m kN/m		
	0.00 kN/m2 0.00 kN/m2 0.00 kN	x x /	0.00 m = 0.00 m = 0.00 m =	0.00 kN/m 0.00 kN/m 0.00 kN/m	X X X	1.40 1.40 1.40	=	0.00	kN/m kN/m kN/m		
	0.00 kN	/	0.00 m =	0.00 kN/m 3.40 kN/m	X	1.40	=	0.00	kN/m kN/m	_	
IDL Imposed Loadii Roof (sloping)	ng 0.75 kN/m2	x	2.80 m =	2.10 kN/m	x	1.60	=	3.36	kN/m		
	0.00 kN/m2 0.00 kN/m2 0.00 kN/m2	X X X	0.00 m = 0.00 m = 0.00 m =	0.00 kN/m 0.00 kN/m 0.00 kN/m	x x x	1.60 1.60 1.60	=	0.00 0.00	kN/m kN/m kN/m		
	0.00 kN/m2 0.00 kN 0.00 kN	× / /	0.00 m = 0.00 m = 0.00 m =	0.00 kN/m 0.00 kN/m 0.00 kN/m	x x x	1.60 1.60 1.60	=	0.00 0.00	kN/m kN/m kN/m		
Point Load P1 @ From Beam =	3.10 m 1.00 x B1(RHS) +	· 1.00 x B2(LHS) + 1.00 x (MAX)	Point Lo From Bea		0.00 1.00 x (
From Beam = DL = L =	1.00 x B1(RHS) + 17.83 kN x	- 1.00 x B2(LHS 1.40 = 1.60 =) + 1.00 x (MAX) 24.96 kN 18.93 kN				(MAX) kN x	1.40 = 1.60 =		0 kN 0 kN	
rom Beam = DL = - = Point Load P3 @ rom Beam = DL =	1.00 x B1(RHS) + 17.83 kN x	1.40 = 1.60 = 00 x (MAX) + 1. 1.40 =	24.96 kN 18.93 kN .00 x (MAX)	From Bea DL IL	am = =	1.00 x (0.00	(MAX) kN x				
rom Beam = L = oint Load P3 @ rom Beam = L =	1.00 x B1(RHS) + 17.83 kN x 11.83 kN x 0.00 m 1.00 x (MAX) + 1. 0.00 kN x	1.40 = 1.60 = 00 x (MAX) + 1. 1.40 =	24.96 kN 18.93 kN .00 x (MAX) 0.00 kN	From Bea DL	am = =	1.00 x (0.00	(MAX) kN x				
rom Beam = L = oint Load P3 @ rom Beam = L = . = . = . Ra = unf. DL =	1.00 x B1(RHS) + 17.83 kN x 11.83 kN x 0.00 m 1.00 x (MAX) + 1. 0.00 kN x 0.00 kN x 0.00 kN x 18.16 kN	1.40 = 1.60 = 00 x (MAX) + 1. 1.40 =	24.96 kN 18.93 kN .00 x (MAX) 0.00 kN	From Bea DL IL	am = = =	1.00 x (0.00	(MAX) kN × kN ×	1.60 = Rb = nf. DL =	0.0/ 47.0 19.3!	0 kN 1 kN 9 kN	
rom Beam = L = oint Load P3 @ rom Beam = L = . = Ra =	1.00 x B1(RHS) + 17.83 kN x 11.83 kN x 0.00 m 1.00 x (MAX) + 1. 0.00 kN x 0.00 kN x	1.40 = 1.60 = 00 x (MAX) + 1. 1.40 =	24.96 kN 18.93 kN 00 x (MAX) 0.00 kN 0.00 kN	From Bea DL IL	am = = =	1.00 x (0.00	(MAX) kN × kN ×	1.60 = Rb =	0.0	0 kN 1 kN 9 kN	
irom Beam = jL = - = from Beam = jL = - = - = - = - = - = - = - = - = - = - = - = - = Ra = unf. DL =	1.00 x B1(RHS) + 17.83 kN x 11.83 kN x 0.00 m 1.00 x (MAX) + 1. 0.00 kN x 0.00 kN x 0.00 kN x 18.16 kN	1.40 = 1.60 = 00 × (MAX) + 1. 1.40 = 1.60 =	24.96 kN 18.93 kN .00 x (MAX) 0.00 kN 0.00 kN	From Bea DL IL	am = = =	1.00 x (0.00 0.00	MAX) kN x kN x	1.60 = Rb = nf. DL =	47.0 19.33 12.4	0 kN 1 kN 9 kN	
rom Beam = JL = Point Load P3 @ rom Beam = JL = Ra = unf. DL = unf. IL = ORCES IN BEAM Moment thear Force	1.00 x B1(RHS) + 17.83 kN x 11.83 kN x 0.00 m 1.00 x (MAX) + 1. 0.00 kN x 0.00 kN x	1.40 = 1.60 = 00 × (MAX) + 1. 1.40 = 1.60 = Ra kNm kN	24.96 kN 18.93 kN .00 x (MAX) 0.00 kN 0.00 kN 0.00 kN		am = = =	1.00 x (0.00 0.00	MAX) kN x kN x USAGE C Shear cap Moment c	Rb = nf. DL = unf. IL = DF STEEL E pacity eapacity esistance n	47.0 19.3 12.4 3EAM B3	0 kN 1 kN 9 kN	% %
rom Beam = JL = - = rom Hamilton - rom Beam = JL = JL = - = Mage: Second secon	1.00 x B1(RHS) + 17.83 kN x 11.83 kN x 0.00 m 1.00 x (MAX) + 1. 0.00 kN x 0.00 kN x 43.98 kN 18.16 kN 11.60 kN ∠ = 95.04 = 47.01	1.40 = 1.60 = 00 × (MAX) + 1. 1.40 = 1.60 = Ra kNm kN kN	24.96 kN 18.93 kN .00 x (MAX) 0.00 kN 0.00 kN 0.00 kN	From Bea DL IL	am = = =	1.00 x (0.00 0.00	MAX) kN x kN x USAGE C Shear cas Moment c Buckling t	Rb = nf. DL = unf. IL = DF STEEL E pacity eapacity esistance n	47.0 19.3 12.4 3EAM B3	0 kN 1 kN 9 kN 1 kN 1 kN 11.21 40.81 72.26	% %
rom Beam = JL = - = Point Load P3 @ rom Beam = JL = - = Ra = unf. DL = unf. IL = CORCES IN BEAM Moment Shear Force xial Force STEEL BEAM B3 = 2	1.00 x B1(RHS) + 17.83 kN x 11.83 kN x 0.00 m 1.00 x (MAX) + 1. 0.00 kN x 0.00 kN x 18.16 kN 11.60 kN = 95.04 = 47.01 = 0.00	1.40 = 1.60 = 00 × (MAX) + 1. 1.40 = 1.60 = Ra kNm kN kN	24.96 kN 18.93 kN .00 x (MAX) 0.00 kN 0.00 kN 0.00 kN	From Bea DL IL	am = = =	1.00 x (0.00 0.00	MAX) kN x kN x USAGE C Shear cas Moment c Buckling t	Rb = nf. DL = unf. IL = DF STEEL E pacity resistance n eflection	47.0 19.3 12.4 3EAM B3	0 kN 1 kN 9 kN 1 kN 1 kN 11.21 40.81 72.26	% % %
rom Beam = JL = Point Load P3 @ rom Beam = JL = Point Load P3 @ rom Beam = JL = Ra = unf. DL = unf. DL = unf. IL = PORCES IN BEAM Moment Shear Force INTELL BEAM B3 = 2 BEARING CHECK Beam No	1.00 x B1(RHS) + 17.83 kN x 11.83 kN x 0.00 m 1.00 x (MAX) + 1. 0.00 kN x 0.00 kN x 43.98 kN 18.16 kN 11.60 kN 203 x 203 x 60 UKC = Total Vertical Load	1.40 = 1.60 = 00 × (MAX) + 1. 1.40 = 1.60 =	24.96 kN 18.93 kN .00 x (MAX) 0.00 kN 0.00 kN 0.00 kN DEFLECT L/250 (all L/360 (im Charact. Compr. Strength	From Bea DL IL IL	am = = =	1.00 x (0.00 0.00 Rb	MAX) kN x kN x USAGE C Shear cap Moment c Buckling r Vertical d	Rb = nf. DL = unf. IL = DF STEEL E pacity esistance n eflection Padstone Width	47.0 19.3 12.4 BEAM B3 noment	0 kN 1 kN 9 kN 1 kN 11.21 40.81 72.26 69.11 Stress Below Padstone	% %

	Project	Beeches, Long	Meadow	, Goring	on Thai	mes RG89E0	3
	C † Subject		Structura	al Calcu	ations		
			Oliuciuiz		ations		
In partnership with D & P Solution	200	lation Number 806-C01	Rev B	Des. DL	Chkd. DK	Chkd. DK	Date 21.02.24
STEEL BEAM B3 - DESIGN DUE TO BS		· · · · ·				·	
	Properties of 203 x 203 x	60 UKC Section					
Design strength of steel py = Half of flange b = Flange thickness T = Area of cross-section A = Rad of gyration (minor axis) r = Modulus of elasticity E = Elastic modulus Zx =	355.00 N/mm ² 102.90 mm 14.2 mm 76.4 cm ² 5.20 cm 205.00 GPa 584 cm ³	Total beam span L = Web depth d = Web thickness t = Overall depth D = Overall breadth B = Moment of inertia Ix = Plastic modulus Sx = Root radius r =		5.80 160.80 9.4 209.6 205.8 6120 656 10.20	mm mm mm cm^4 cm^3		
Forces in beam		Beam bearing design	details				
Shear Force = 47.0	4 kNm 1 kN 0 kN	Restraint Condition Coe Restraint Condition Coe			1.2 + 2 x D 1.2 + 2 x D		
Classification of cross-section Parameter ϵ =	0.880						
Web d/t = Web (d/t)/ε =	17.11 19.44 ≤80	Class 1 plastic					
Flanges b/t = Flanges (b/t)/ε =	7.25 8.23 ≤ 9	Class 1 plastic					
	Section is class 1 plastic	:					
Shear capacity Shear area Av = Web $(d/t)/\varepsilon$ = Shear capacity Pv =	419.66 kN	es not need to be checked for s	hear bucklii	ng)			
Design shear force =	47.01 kN	ОК					
Moment capacity Design bending moment M= Moment capacity low shear Mc =	95.04 kNm 232.88 kNm	ОК					
Effective length for lateral-torsional bu	-						
Total Beam Span = Effective length Le = Slenderness ratio λ =	5800 mm 7379 mm 141.91						
Equivalent slenderness Buckling parameter u = Torsional index x = Slenderness factor v = Ratio β w = Equivalent slenderness λ LT = Limiting slenderness λ LO = λ LT > λ LO (Allowance should be made	0.846 14.1 0.637 1.000 76.50 30.20 for lateral-torsional buckl	ling)					
Bending strenght Bending strenght ρb =	200.49 N/mm^2 (With	Table 16)					
Buckling resistance moment Equivalent uniform moment factor mLT = Buckling resistance moment Mb = Design bending moment	1.00 (Conservative a 131.52 kNm 95.04 kNm	approach) OK					
Vertical dead & imposed load deflection Limiting deflection = Maximum deflection =	n 23.200 mm (L/250) 16.032 mm	ок					
Vertical imposed load deflection Limiting deflection = Maximum deflection =	16.111 mm (L/360) 6.285 mm	ок					
STEEL BEAM B3 = 203 x 203 x 60 UKC							

mpr	-	C T	t		Structu	ral Calcul	lations		
In partnership wit	ith D & P Solutio	ins	Calculatior 23-1806-0		Rev B	Des. DL	Chkd. DK	Chkd. DK	Date 21.02.24
BEAM B6 Beam Span L =	4.10 m								
Load 100mm Thick Wall Fimber floor (1st) Ceiling Roof (sloping)	Load Positioned from (m) to (m) 0.00 4.10 0.00 4.10 0.00 4.10 0.00 4.10 0.00 4.10 0.00 4.10 0.00 4.10 0.00 4.10 0.00 4.10 0.00 4.10	Element 2.50 m 3.55 m 3.55 m 3.55 m 0.00 m 0.00 m 0.00 m	/ / / /	1.00 = 2.00 = 2.00 = 2.00 = 1.00 =	2.50 1.78 1.78 1.78 0.00	m m m			
JDL LOADING JDL Dead Loading Beam Self Weight OOmm Thick Wall Timber floor (1st) Seiling Roof (sloping)	2.10 kN/m2 1.10 kN/m2 0.45 kN/m2 1.00 kN/m2 0.00 kN/m2 0.00 kN 0.00 kN	x 1. x 1. x 1. x 0. / 0.	50 m = 78 m = 78 m = 78 m = 00 m = 20 m =	0.37 kN/m 5.25 kN/m 0.80 kN/m 1.78 kN/m 0.00 kN/m 0.00 kN/m 10.15 kN/m	x x x x x x x x x	1.40 1.40 1.40 1.40 1.40 1.40 1.40		0.52 kN/m 7.35 kN/m 2.73 kN/m 1.12 kN/m 0.00 kN/m 0.00 kN/m 14.20 kN/m	
JDL Imposed Load 00mm Thick Wall Timber floor (1st) 2eiling Roof (sloping)	ding 0.00 kN/m2 1.50 kN/m2 0.25 kN/m2 0.75 kN/m2 0.00 kN/m2 0.00 kN 0.00 kN	x 1. x 1. x 1. x 0. / 0.	50 m = 78 m = 78 m = 78 m = 00 m = 20 m =	0.00 kN/m 2.66 kN/m 0.44 kN/m 1.33 kN/m 0.00 kN/m 0.00 kN/m 4.44 kN/m	x x x x x x	1.60 1.60 1.60 1.60 1.60 1.60		0.00 kN/m 4.26 kN/m 0.71 kN/m 0.00 kN/m 0.00 kN/m 7.10 kN/m	_
rom Beam = DL = - =	0.00 kN x		(MAX) 00 kN 00 kN	Point Loa e From Bear DL IL		0.00 1.00 x (I 0.00 0.00	MAX) kN x		.00 kN .00 kN
roint Load P3 @ rom Beam = DL = - =	0.00 kN x	00 × (MAX) + 1.00 × 1.40 = 0. 1.60 = 0.							
		Г.Л. Л.	0 0	000	Û	Ţ		Rb = 43	
Ra = unf. DL = unf. IL =	= 20.80 kN /	Ra			¥	Rb		nf. DL = 20	.67 kN 1.80 kN 1.10 kN
unf. DL = unf. IL = ORCES IN BEAM loment hear Force xial Force TEEL BEAM B6 =	20.80 kN 2 9.10 kN 2	 / kNm / kN) kN	L/300; Br	TION CRITERIA ittle finishes (all loads) posed loads only)		! ! !	USAGE O Shear cap Moment ca	nf. DL = 20 nnf. IL = 9 F STEEL BEAM E acity apacity assistance moment	.80 kN .10 kN
unf. DL = unf. IL = ORCES IN BEAM Ioment hear Force xial Force	= 20.80 kN 2 9.10 kN 2 = 44.77 = 43.67 = 0.00	 / kNm / kN) kN	L/300; Br	ittle finishes (all loads)	Bearing Width mm	! ! !	USAGE O Shear cap Moment ca Buckling re	nf. DL = 20 nnf. IL = 9 F STEEL BEAM E acity apacity assistance moment	15.85 % 40.82 % 68.24 % 86.84 % Below Padstone

	Project	Beeches, Lon	g Meado	w, Gorinę	g on Thai	nes RG89E	G
	N t Subject		Structu	iral Calcu	lations		
			Sirucii		lations		
In partnership with D & P Solutions	Calculatio 23-1806	on Number 5-C01	Rev B	Des. DL	Chkd. DK	Chkd. DK	Date 21.02.24
STEEL BEAM B6 - DESIGN DUE TO BS 5950	<u>0-1</u>						
Pro	operties of 152 x 152 x 37	UKC Section					
Half of flange b = Flange thickness T = Area of cross-section A = Rad of gyration (minor axis) r =	355.00 N/mm ² 77.20 mm 11.5 mm 47.1 cm ² 3.87 cm 205.00 GPa 273 cm ³	Total beam span L = Web depth d = Web thickness t = Overall depth D = Overall breadth B = Moment of inertia Ix = Plastic modulus Sx = Root radius r =		161.8 154.4 2210	mm mm mm cm^4 cm^3		
Forces in beam		Beam bearing design	n details				
Moment=44.77 kNrShear Force=43.67 kNAxial Force=0.00 kN	n	Restraint Condition Co Restraint Condition Co			1.2 + 2 x E 1.2 + 2 x E		
Classification of cross-section Parameter ε =	0.880						
Web d/t = Web $(d/t)/\epsilon$ =	15.45 17.55 ≤80	Class 1 plastic					
Flanges b/t = Flanges (b/t)/ε =	6.71 7.63 ≤9	Class 1 plastic					
Sec	ction is class 1 plastic						
Web (d/t)/ε = Shear capacity Pv =	294.40 mm (Av = tD, UC s 17.55 ≤ 70 (Web does no 275.71 kN	ot need to be checked for	shear buc	kling)			
Design shear force =	43.67 kN	OK					
Moment capacity Design bending moment M= Moment capacity low shear Mc =	44.77 kNm 109.70 kNm	ок					
Effective length for lateral-torsional bucklin Total Beam Span =	ig 4100 mm						
Effective length Le = Slenderness ratio λ =	5244 mm 135.49						
Equivalent slenderness Buckling parameter u = Torsional index x = Slenderness factor v = Ratio βw = Equivalent slenderness λLT = Limiting slenderness $\lambda L0$ = $\lambda LT > \lambda L0$ (Allowance should be made for I	0.848 13.3 0.634 1.000 72.85 30.20 Jateral-torsional buckling)					
Bending strenght	212.32 N/mm^2 (With Tab						
Buckling resistance moment Equivalent uniform moment factor mLT = Buckling resistance moment Mb = Design bending moment	1.00 (Conservative appr 65.61 kNm 44.77 kNm	oach) OK					
	13.667 mm (L/300; Brittle f 11.868 mm	ïnishes) OK					
Vertical imposed load deflection Limiting deflection = Maximum deflection =	11.389 mm (L/360) 3.611 mm	ок					
<u>STEEL BEAM B6 = 152 x 152 x 37 UKC</u>							

RE	EGE		Project Beeches, Long Meadow, Goring on Thames RG89EG									
p r	o j e	C t Sub	oject			Structu	ıral Calcula	tions				
In partnership witl	D & P Solution	ıs	Calcul 23-18		Number C01	Rev B	Des. DL	Chkd. DK	Chkd. DK	Date 21.02.24		
BEAM B6. (Calculated For Loading Purposes Only) Beam Span L = 4.10 m												
Load 100mm Thick Wall - - - - -	Load Positioned from (m) to (m) 0.00 4.10 0.00 4.10 0.00 4.10 0.00 4.10 0.00 4.10 0.00 4.10 0.00 4.10 0.00 4.10 0.00 4.10	Element Span/Height 2.50 m 0.00 m 0.00 m 0.00 m 0.00 m 0.00 m 0.00 m		/ / /	1.00 = 1.00 = 1.00 = 1.00 = 1.00 =	2.50 0.00 0.00 0.00 0.00	m m m					
UDL LOADING UDL Dead Loading Beam Self Weight 100mm Thick Wall - - - -	2.10 kN/m2 0.00 kN/m2 0.00 kN/m2 0.00 kN/m2 0.00 kN/m2 0.00 kN 0.00 kN	x × × / /	2.50 m 0.00 m 0.00 m 0.00 m 0.00 m 0.00 m 0.00 m		0.37 kN/m 5.25 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 5.62 kN/m	x × × × × × ×	1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40		0.52 kN/m 7.35 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 7.87 kN/m			
UDL Imposed Loadi 100mm Thick Wall - - - -	ing 0.00 kN/m2 0.00 kN/m2 0.00 kN/m2 0.00 kN/m2 0.00 kN/m2 0.00 kN 0.00 kN	x × × × / /	2.50 m 0.00 m 0.00 m 0.00 m 0.00 m 0.00 m		0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m	x × × × × × ×	1.60 1.60 1.60 1.60 1.60 1.60 1.60		0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m			
Point Load P1 @ From Beam = DL = IL =		00 x (MAX) + 1.0 1.40 = 1.60 =	00 x (MAX) 0.00 kN 0.00 kN		Point Loac From Bean DL IL		0.00 m 1.00 x (M 0.00 kt 0.00 kt	AX) N x	1.40 = 1.60 =	0.00 kN 0.00 kN		
Point Load P3 @ From Beam = DL = IL =	0.00 m 1.00 x (MAX) + 1.0 0.00 kN x 0.00 kN x	1.40 =										
Ra = unf. DL = unf. IL =	16.13 kN 11.52 kN 0.00 kN	Ra	<u>.</u>	<u>Ţ</u>	<u>\$</u>	Ţ	Rb		inf. DL =	16.13 kN 11.52 kN 0.00 kN		

HIp r	-) - j		Subject Structural Calculations										
In partnership wit	th D & P So	lutions		ulation 1806-0	Number 201		Rev B	Des. DL	Chkd. DK	Chkd. DK		Date 21.02.24	1
BEAM B7 3eam Span L =	3.72 m												
Load 100mm Thick Wall Fimber floor (1st) Ceiling Roof (sloping)	0.00 3. 0.00 3. 0.00 3. 0.00 3. 0.00 3. 0.00 3. 0.00 3. 0.00 3. 0.00 3. 0.00 3.	d Elem (m) Span/H 72 1.50 72 3.90 72 3.90 72 3.90 72 0.00 72 0.00 72 0.00 72 0.00	leight m m m m m	/ / / /	1.00 2.00 2.00 2.00 1.00	= = = =	1.50 1.95 1.95 1.95 0.00	m m m					
JDL LOADING JDL Dead Loading Beam Self Weight I00mm Thick Wall Timber floor (1st) Ceiling Roof (sloping)	2.10 kN/n 1.10 kN/n 0.45 kN/n 1.00 kN/n 0.00 kN 0.00 kN 0.00 kN	12 X 12 X 12 X	1.50 m 1.95 m 1.95 m 1.95 m 0.00 m 0.00 m 0.00 m	= = = =	3.15 2.15 0.88 1.95 0.00 0.00 0.00	kN/m kN/m kN/m kN/m kN/m kN/m kN/m	x x x x x x x x x	1.40 1.40 1.40 1.40 1.40 1.40 1.40	= = = =	4.41 3.00 1.23 2.73 0.00 0.00 0.00	kN/m kN/m kN/m kN/m kN/m kN/m kN/m	_	
JDL Imposed Load 00mm Thick Wall Timber floor (1st) 2eiling Roof (sloping)	ling 0.00 kN/n 1.50 kN/n 0.25 kN/n 0.75 kN/n 0.00 kN/n 0.00 kN	12 X 12 X 12 X	1.50 m 1.95 m 1.95 m 1.95 m 0.00 m 0.00 m 0.00 m	= = = =	2.93 0.49 1.46 0.00 0.00 0.00	kN/m kN/m kN/m kN/m kN/m kN/m kN/m	x x x x x x x	1.60 1.60 1.60 1.60 1.60 1.60	= = = =	4.68 0.78 2.34 0.00 0.00 0.00	kN/m kN/m kN/m kN/m kN/m kN/m kN/m	_	
Point Load P1 @ From Beam = DL = L =) + 1.00 × (MAX) x 1.40 = x 1.60 =	+ 1.00 x (MA) 0.00 kN 0.00 kN	1		Point Loa From Bea DL IL		0.00 1.00 x 0.00 0.00	(MAX) kN x	1.40 = 1.60 =		0 kN 0 kN	
Point Load P3 @ From Beam = DL = L =	0.00 kN) + 1.00 x (MAX) x 1.40 = x 1.60 =		1									
Ra = unf. DL = unf. IL =	15.67 kN	 ∧ Ra	<u>0</u> 0	0	<u>0</u> (<u>} </u>		↓ ∠ Rb		Rb = nf. DL = unf. IL =	36.4 15.6 9.0		
ORCES IN BEAM		I	DI	EFLECT	ION CRITE	RIA			USAGE C	OF STEEL E	BEAM B7		
Moment Shear Force Axial Force		33.89 kNm 36.44 kN 0.00 kN			ttle finishes posed loads				Shear cap Moment c Buckling r Vertical de	apacity esistance n	noment	16.71 38.50 66.35 74.69	% %
STEEL BEAM B7 =	152 x 152 x 30	<u>UKC S355</u>											
Beam No	Total Vertical Load From k	Typ Sup	e of (port S	Charact. Compr. Strength , N/mm2	Local Strength γb*fk/γm N/mm2	Bearing Length mm	Bearing Width mm	Stress Below Bearing N/mm2	Padstone Length mm	Padstone Width mm	Ecc	Stress Below Padstone N/mm2	Summa
B7 (LHS):		.44 Beam Cor			1.25xfk/3.5		, ·						
Beam Support Su B7 (LHS):	mmary: Provide Steel B	eam/Column/Tim			1.25	100	152.9	2.38	Restraint	100 aring desig Condition C Condition C	oef. Supp	ort A:	Satisfacto 1.2 + 2 x 1.2 + 2 x

	Project	Beeches, Lon	g Meado	w, Goring	g on Thai	mes RG89E	G
	Subject		Structu	iral Calcu	lations		
			Olidole		lations		
In partnership with	Optionalist		Davis	Dee	Ohlid		Data
D & P Solutions	23-1806	on Number 5-C01	Rev B	Des. DL	Chkd. DK	Chkd. DK	Date 21.02.24
STEEL BEAM B7 - DESIGN DUE TO BS 595	<u>50-1</u>						
Pro	operties of 152 x 152 x 30	UKC Section					
Design strength of steel py = Half of flange b = Flange thickness T = Area of cross-section A = Rad of gyration (minor axis) r = Modulus of elasticity E =	355.00 N/mm ² 76.45 mm 9.4 mm 38.3 cm ² 3.83 cm 205.00 GPa	Total beam span L = Web depth d = Web thickness t = Overall depth D = Overall breadth B = Moment of inertia Ix =		3.72 123.60 6.5 157.6 152.9 1750	mm mm mm mm		
Elastic modulus Zx =	203.00 GFa 222 cm^3	Plastic modulus Sx = Root radius r =			cm^3		
Forces in beam		Beam bearing desigr	details				
Moment = 33.89 kN	m	Restraint Condition Co	ef. Suppor	rt A:	1.2 + 2 x D)	
Shear Force=36.44 kNAxial Force=0.00 kN		Restraint Condition Co			1.2 + 2 x D)	
Classification of cross-section Parameter ε =	0.880						
Web d/t = Web (d/t)/ε =	19.02 21.60 ≤ 80	Class 1 plastic					
Flanges b/t = Flanges (b/t)/ε =	8.13 9.24 ≤ 10	Class 2 compact					
Se	ction is class 2 compact						
Shear capacity Shear area Av = 1 Web (d/t)/ε =	1024.40 mm (Av = tD, UC s 21.60 ≤ 70 (Web does no		shear buc	klina)			
Shear capacity Pv = Design shear force =	218.20 kN 36.44 kN	ок		0,			
Moment capacity							
Design bending moment M= Moment capacity low shear Mc =	33.89 kNm 88.04 kNm	ок					
Effective length for lateral-torsional bucklin Total Beam Span =							
Effective length Le =	4779 mm						
Slenderness ratio λ =	124.78						
Equivalent slenderness Buckling parameter u =	0.847						
Torsional index x =	16.1						
Slenderness factor v =	0.707						
Ratio βw = Equivalent slenderness λLT =	1.000 74.72						
Limiting slenderness $\lambda L0 = \lambda LT > \lambda L0$ (Allowance should be made for	30.20 Jateral-torsional buckling)					
	latoral tororonal buoking,						
Bending strenght Bending strenght ρb =	205.96 N/mm^2 (With Tab	ble 16)					
Buckling resistance moment							
Equivalent uniform moment factor mLT = Buckling resistance moment Mb = Design bending moment	1.00 (Conservative appr 51.08 kNm 33.89 kNm	oach) OK					
Vertical dead & imposed load deflection Limiting deflection = Maximum deflection =	12.400 mm (L/300; Brittle f 9.261 mm	ïnishes) OK					
Vertical imposed load deflection Limiting deflection = Maximum deflection =	10.333 mm (L/360) 3.395 mm	ок					
STEEL BEAM B7 = 152 x 152 x 30 UKC							

	FGF		ect	Beed	hes, Lor	ig Meado	w, Gorin	g on Thai	mes RG8	9EG		
H p r	-) o j e	ct ^{Subj}	ect			Structu	ural Calcu	ulations				
In partnership with	D & P Solutio	ns	Calculation 23-1806-0			Rev B	Des. DL	Chkd. DK	Chkd. DK		Date 21.02.24	1
BEAM B8 Beam Span L =	2.15 m											
	Load Positioned from (m) to (m) 0.00 2.15 0.00 2.15 0.00 2.15 0.00 2.15 0.00 2.15 0.00 2.15 0.00 2.15 0.00 2.15 0.00 2.15	Element Span/Height 5.25 m 8.30 m 8.30 m 0.00 m 0.00 m	 	1.00 2.00 2.00 2.00 1.00	= = = =	5.25 4.15 4.15 4.15 0.00	m m m					
UDL LOADING	0.00 2.15	0.00 m										
Beam Self Weight 215mm/Cavity Wall Timber floor (1st) Ceiling Roof (sloping) - -	4.20 kN/m2 1.10 kN/m2 0.45 kN/m2 1.00 kN/m2 0.00 kN/m2 0.00 kN 0.00 kN	x x x /	5.25 m = 4.15 m = 4.15 m = 0.00 m = 0.00 m = 0.00 m =	22.05 4.57 1.87 4.15 0.00 0.00	kN/m kN/m kN/m kN/m kN/m kN/m	x x x x x x x x	1.40 1.40 1.40 1.40 1.40 1.40 1.40	= = = = =	30.87 6.39 2.61 5.81 0.00 0.00 0.00	kN/m kN/m kN/m kN/m kN/m kN/m kN/m kN/m	-	
UDL Imposed Loadi 215mm/Cavity Wall Timber floor (1st) Ceiling Roof (sloping) - -	ing 0.00 kN/m2 1.50 kN/m2 0.25 kN/m2 0.75 kN/m2 0.00 kN/m2 0.00 kN 0.00 kN	x x x x /	5.25 m = 4.15 m = 4.15 m = 4.15 m = 0.00 m = 0.00 m =	6.23 1.04 3.11 0.00 0.00	kN/m kN/m kN/m kN/m kN/m kN/m kN/m	x x x x x x	1.60 1.60 1.60 1.60 1.60 1.60	= = = =	9.96 1.66 4.98 0.00 0.00 0.00	kN/m kN/m kN/m kN/m kN/m kN/m kN/m	-	
Point Load P1 @ From Beam = DL = IL =		1.40 = 1	1.00 x (MAX) 6.13 kN 0.00 kN		Point Loa From Bear DL IL		1.95 1.00 x 11.29 0.00	EB1(MAX) kN x	1.40 = 1.60 =	15.80 0.00		
Point Load P3 @ From Beam = DL = IL =		1.40 =										
Ra = unf. DL = unf. IL =	77.51 kN 42.61 kN 11.15 kN		۲ ۲		<u>, </u>				Rb = nf. DL = ınf. IL =	89.24 51.00 11.15	kN	
FORCES IN BEAM		Ra	DEFLECT	ION CRITE	<u>RIA</u>		KD	USAGE O	F STEEL B	BEAM B8		
Moment Shear Force Axial Force	= 45.88 = 89.24 = 0.00	kN		ttle finishes posed loads				Shear cap Moment ca Buckling re Vertical de	apacity esistance m	noment	40.91 52.11 65.94 58.70	% %
	152 x 152 x 30 UKC :	<u>8355 BEAN</u>	<u>I WITH PLATE.</u>	<u>SEE DETA</u>	ILS ON SL	IMMARY P	<u>AGE</u>					
			Charact.	Local Strength	Bearing Length	Bearing Width	Stress Below	Padstone Length	Padstone Width	Ecc	Stress Below	
STEEL BEAM B8 = 1 BEARING CHECK Beam No	Total Vertical Load From kN	Type of Support	Compr. Strength fk, N/mm2	γb*fk/γm N/mm2	mm	mm	Bearing N/mm2	mm	mm	mm	Padstone N/mm2	Summar
BEARING CHECK Beam No	Vertical Load		Strength	γb*fk/γm		mm 152.9		mm 400	mm 200	mm 0	Padstone	Summary

	Project	Beeches, Lon	g Meado	w, Goring	g on Tha	mes RG89E	G
KEGEN	Subject		-		-		
projec 🔊	†		Structu	iral Calcu	llations		
In partnership with	Calculatio	n Number	Devi	Dee	Chird	Chief	Dete
D & P Solutions	23-1806-		Rev B	Des. DL	Chkd. DK	Chkd. DK	Date 21.02.24
STEEL BEAM B8 - DESIGN DUE TO BS 5950-1							
Prope	rties of 152 x 152 x 30 L	JKC Section					
Half of flange b = 76 Flange thickness T = 76 Area of cross-section A = 20 Rad of gyration (minor axis) r = 20 Modulus of elasticity E = 205	5.00 N/mm^2 5.45 mm 9.4 mm 9.8.3 cm^2 3.83 cm 5.00 GPa 222 cm^3	Total beam span L = Web depth d = Web thickness t = Overall depth D = Overall breadth B = Moment of inertia Ix = Plastic modulus Sx = Root radius r =		157.6 152.9 1750	mm mm mm cm^4 cm^3		
Forces in beam		Beam bearing desig	l details				
Moment=45.88 kNmShear Force=89.24 kNAxial Force=0.00 kN		Restraint Condition Co Restraint Condition Co			1.2 + 2 x [1.2 + 2 x [
Classification of cross-section 0. Parameter ε = 0.	880						
	9.02 1.60 ≤ 80	Class 1 plastic					
	3.13 9.24 ≤ 10	Class 2 compact					
Sectio	on is class 2 compact						
Web (d/t)/ε = 21	I.40 mm (Av = tD, UC se I.60 ≤ 70 (Web does not 3.20 kN		shear buc	kling)			
	0.24 kN	ОК					
0 0	5.88 kNm 3.04 kNm	ок					
Effective length for lateral-torsional buckling Total Beam Span = 2	150 mm						
Effective length Le = 2	895 mm 5.59						
Torsional index x = γ Slenderness factor v =0.Ratio β w =1.Equivalent slenderness λ LT =53	847 16.1 830 000 8.17 .20 vral-torsional buckling)						
Bending strenghtBending strenght ρb =280).58 N/mm^2 (With Tabl	e 16)					
Buckling resistance moment Mb = 69	I.00 (Conservative appro 9.58 kNm 5.88 kNm	oach) OK					
	167 mm (L/300; Brittle fir 207 mm	nishes) OK					
	972 mm (L/360) 806 mm	ок					
<u>STEEL BEAM B8 = 152 x 152 x 30 UKC</u>							

	$\Box \bigcirc \Box$. N 🛌	-4	Bee	ches, Loi	ng Meado	w, Goring	g on Thai	mes RG8	9EG		
Hlp r	o j e	C T	ct			Structu	ural Calcu	ulations				
In partnership with	h D & P Solutio	ns	Calculation 23-1806-0			Rev B	Des. DL	Chkd. DK	Chkd. DK		Date 21.02.24	ļ
BEAM B9 Beam Span L =	3.29 m											
.oad 100mm Thick Wall Fimber floor (1st) Ceiling Roof (sloping)	Load Positioned from (m) to (m) 0.00 3.29 0.00 3.29 0.00 3.29 0.00 3.29 0.00 3.29 0.00 3.29 0.00 3.29 0.00 3.29 0.00 3.29 0.00 3.29	Element Span/Height 1.75 m 7.70 m 7.70 m 0.00 m 0.00 m 0.00 m	 	1.00 2.00 2.00 2.00 1.00	= = =	1.75 3.85 3.85 3.85 3.85 0.00	m m m					
JDL LOADING JDL Dead Loading Beam Self Weight IO0mm Thick Wall Fimber floor (1st) Ceiling Roof (sloping)	2.10 kN/m2 1.10 kN/m2 0.45 kN/m2 1.00 kN/m2 0.00 kN/m2 0.00 kN	x 3 x 3 x 3 x 0 / 0	.75 m = .85 m = .85 m = .85 m = .00 m = .00 m = .00 m =	3.68 4.24 1.73 3.85 0.00 0.00 0.00	kN/m kN/m kN/m kN/m kN/m kN/m kN/m	x x x x x x x x	1.40 1.40 1.40 1.40 1.40 1.40 1.40	= = = = =	0.52 5.15 5.93 2.43 5.39 0.00 0.00 0.00 0.00 19.41	kN/m kN/m kN/m kN/m kN/m kN/m	_	
JDL Imposed Loadi 00mm Thick Wall Timber floor (1st) Seiling Roof (sloping)	ing 0.00 kN/m2 1.50 kN/m2 0.25 kN/m2 0.00 kN/m2 0.00 kN 0.00 kN	x 3 x 3 x 3 x 0 / 0	.75 m = .85 m = .85 m = .00 m = .00 m =	5.78 0.96 2.89 0.00 0.00 0.00	kN/m kN/m kN/m kN/m kN/m kN/m kN/m	x x x x x x x x	1.60 1.60 1.60 1.60 1.60 1.60	= = =	0.00 9.24 1.54 4.62 0.00 0.00 0.00 15.40	kN/m kN/m kN/m kN/m kN/m kN/m	-	
Point Load P1 @ From Beam = DL = L =	11.52 kN x		00 x (MAX) .13 kN .00 kN		Point Loa From Bea DL IL		0.00 1.00 x 0.00 0.00	(MAX) kN x	1.40 = 1.60 =	0.00		
Point Load P3 @ From Beam = DL = L =	0.00 kN x	00 x (MAX) + 1.00 : 1.40 = 0 1.60 = 0										
Ra = unf. DL = unf. IL =	72.55 kN 33.73 kN ∠ 15.83 kN ∠		<u>0</u> 0	<u> () (</u>	<u>} </u>		T Rb		Rb = nf. DL = inf. IL =	58.09 23.40 15.83) kN	
ORCES IN BEAM		I	DEFLECT	ION CRITE	RIA			USAGE O	F STEEL B	EAM B9		
	= 48.47 = 72.55 = 0.00 152 x 152 x 37 UKC 5	kN kN		ttle finishes posed load				Shear cap Moment ca Buckling re Vertical de	apacity esistance m	oment	26.32 44.19 65.11 74.93	% %
BEARING CHECK	Total Vertical Load	Type of Support	Charact. Compr. Strength fk, N/mm2	Local Strength γb*fk/γm N/mm2	Bearing Length mm	Bearing Width mm	Stress Below Bearing N/mm2	Padstone Length mm	Padstone Width mm	Ecc	Stress Below Padstone N/mm2	Summa
Beam No	From kN				1	1	1	1			+	
No		7.3N Blocks	6.4	1.25xfk/3.5 2.29 1.25xfk/3.5	100	154.4	4.70	440	100	0	1.65	Satisfacto

	Project	Beeches, Long	g Meado	w, Gorine	g on Thai	mes RG89E	G
	N t Subject		Structu	iral Calcu	lations		
			Silucio		lations		
In partnership with				_			
D & P Solutions	23-1806	on Number 5-C01	Rev B	Des. DL	Chkd. DK	Chkd. DK	Date 21.02.24
STEEL BEAM B9 - DESIGN DUE TO BS 595	<u>0-1</u>						
Pro	operties of 152 x 152 x 37	UKC Section					
	355.00 N/mm^2 77.20 mm	Total beam span L =		3.29			
Half of flange b = Flange thickness T =	11.5 mm	Web depth d = Web thickness t =		123.60 8.0	mm mm		
Area of cross-section A =	47.1 cm^2	Overall depth D =		161.8			
Rad of gyration (minor axis) r =	3.87 cm	Overall breadth B =		154.4			
Modulus of elasticity E = Elastic modulus Zx =	205.00 GPa 273 cm^3	Moment of inertia Ix = Plastic modulus Sx =		2210 309	cm^3		
		Root radius r =		7.60			
Forces in beam		Beam bearing design	details				
Moment = 48.47 kNr	n	Restraint Condition Co	ef. Suppor	t A:	1.2 + 2 x C)	
Shear Force = 72.55 kN Axial Force = 0.00 kN		Restraint Condition Co	ef. Suppor	t B:	1.2 + 2 x E)	
Classification of cross-section Parameter ϵ =	0.880						
Web d/t =	15.45						
Web $(d/t)/\epsilon =$	15.45 17.55 ≤ 80	Class 1 plastic					
Flanges b/t = Flanges (b/t)/ε =	6.71 7.63 ≤9	Class 1 plastic					
	ction is class 1 plastic						
	•						
Shear capacity Shear area Av = 1	294.40 mm (Av = tD, UC s	section)					
Web $(d/t)/\epsilon =$		ot need to be checked for	shear bucl	kling)			
	275.71 kN			•,			
Design shear force =	72.55 kN	OK					
Moment capacity							
Design bending moment M= Moment capacity low shear Mc =	48.47 kNm 109.70 kNm	ок					
Effective length for lateral-torsional bucklin	-						
Total Beam Span = Effective length Le =	3290 mm 4272 mm						
Slenderness ratio λ =	110.38						
Equivalent slenderness							
Buckling parameter u =	0.848						
Torsional index x =	13.3						
Slenderness factor v = Ratio βw =	0.689 1.000						
Equivalent slenderness $\lambda LT =$	64.47						
Limiting slenderness $\lambda L0 =$	30.20						
λ LT > λ L0 (Allowance should be made for 1	ateral-torsional bucking)					
Bending strenght Bending strenght ρb =	240.92 N/mm^2 (With Ta	ble 16)					
Buckling resistance moment							
Equivalent uniform moment factor mLT =	1.00 (Conservative app	roach)					
Buckling resistance moment Mb = Design bending moment	74.44 kNm 48.47 kNm	ок					
Vertical dead & imposed load deflection Limiting deflection = Maximum deflection =	10.967 mm (L/300; Brittle 8.217 mm	finishes) OK					
Vortical imposed load deflection							
Vertical imposed load deflection Limiting deflection =	9.139 mm (L/360)						
Maximum deflection =	3.247 mm	ок					
<u>STEEL BEAM B9 = 152 x 152 x 37 UKC</u>							

TR E	EGE			Beech	nes, Lor	ng Meado	w, Goring	g on Tha	mes RG89I	EG		
tip r	o j e	C T	t			Structu	ıral Calcu	lations				
In partnership wit	h D & P Solutio	ons	Calculatior 23-1806-0			Rev B	Des. DL	Chkd. DK	Chkd. DK	2	Date 1.02.24	ļ
BEAM B10 Beam Span L =	5.80 m											
	Load Positioned	Element										
oad imber floor (1st)	from (m) to (m) 0.00 5.80 0.00 5.80	Span/Height 6.60 m 0.00 m	/	2.00 1.00	=	3.30 0.00	m					
	0.00 5.80 0.00 5.80 0.00 5.80	0.00 m 0.00 m 0.00 m	/ / /	1.00 1.00 1.00	=	0.00 0.00 0.00	m					
	0.00 5.80 0.00 5.80	0.00 m 0.00 m										
IDL LOADING IDL Dead Loading												
eam Self Weight imber floor (1st)	1.10 kN/m2 0.00 kN/m2		30 m = 30 m =	0.46 k 3.63 k 0.00 k	N/m	x x x	1.40 1.40 1.40	= = =	0.65 ki 5.08 ki 0.00 ki	N/m		
	0.00 kN/m2 0.00 kN/m2	x 0. x 0.	00 m = 00 m =	0.00 k 0.00 k	N/m N/m	X X	1.40 1.40	=	0.00 ki 0.00 ki	V/m V/m		
	0.00 kN/m2 0.00 kN 0.00 kN	/ 0.	00 m = 00 m = 00 m =	0.00 k 0.00 k 0.00 k	N/m N/m	X X X	1.40 1.40 1.40	= = =	0.00 kl 0.00 kl 0.00 kl	V/m V/m		
				4.09 k	N/m				5.73 kl	N/m		
IDL Imposed Load imber floor (1st)	ing 1.50 kN/m2 0.00 kN/m2	x 0.	30 m = 00 m =	4.95 k 0.00 k		x ×	1.60	=	7.92 ki 0.00 ki			
	0.00 kN/m2 0.00 kN/m2 0.00 kN/m2	x 0.	00 m = 00 m = 00 m =	0.00 k 0.00 k 0.00 k	N/m	X X X	1.60 1.60 1.60	= = =	0.00 ki 0.00 ki 0.00 ki	V/m		
	0.00 kN 0.00 kN	/ 0.	00 m = 00 m =	0.00 k 0.00 k 4.95 k	N/m N/m	x	1.60 1.60	=	0.00 ki 0.00 ki 7.92 ki	V/m V/m		
				4.55 K	1				7.32 K	wiii		
Point Load P1 @ From Beam =		1.00 x (MAX) + 1.00 x 1.40 = 0.	(MAX) 00 kN	F	oint Loa rom Bea		0.00 1.00 x (0.00	MAX)	1.40 =	0.00 k	N	
eoint Load P3 @	0.00 kN x		00 kN	IL		=	0.00		1.60 =	0.00 k		
From Beam = DL = - =	1.00 x (MAX) + 7 0.00 kN x		(MAX) 00 kN 00 kN									
Ra = unf. DL =	39.58 kN 11.86 kN		ΥŪ	Û Û	Ŷ	Ŷ	Ţ	\	Rb = nf. DL =	39.58 k 11.86 k		
unf. IL =	14.36 kN								unf. IL =	14.36 k		
		Ra					Rb					
ORCES IN BEAM		9 kNm	L/250 (all					Shear cap		<u>AM B10</u>	12.71	
Shear Force Axial Force		8 kN 0 kN	L/360 (im	posed loads o	only)			Moment c Buckling r Vertical de	esistance mor	ment	35.93 59.40 61.42	%
TEEL BEAM B10 =	= 203 x 203 x 46 UK	<u>C S355</u>										
BEARING CHECK	Total		Charact.	Local	Bearing	Bearing	Stress	Padstone	Padstone	Ecc	Stress	
Beam No	Vertical Load From kN	Type of Support	Compr. Strength fk, N/mm2	Strength γb*fk/γm N/mm2	Length	Width	Below Bearing N/mm2	Length	Width	F	Below Padstone N/mm2	Summa
B10 (LHS):	B10 39.58	Beam Connection	in, in/mm2			mm	19/111112	mm	mm		19/111112	
B10 (RHS):	B10 39.58	Beam Connection										
Beam Support Su B10 (LHS):		/Column/Timber Post	Connection						aring design Condition Coe		۵.	1.0 + 2 x

	Project	Beeches, Lon	g Meado	w, Gorinę	g on Thai	nes RG89E	G
	N t Subject		Structu	ral Calcu	lations		
In partnership with			onuolu		lationio		
D & P Solutions	Calculatio 23-1806	on Number -C01	Rev B	Des. DL	Chkd. DK	Chkd. DK	Date 21.02.24
STEEL BEAM B10 - DESIGN DUE TO BS 59	<u>50-1</u>						
Pro	operties of 203 x 203 x 46	UKC Section					
Half of flange b = Flange thickness T = Area of cross-section A = Rad of gyration (minor axis) r =	355.00 N/mm*2 101.80 mm 11.0 mm 58.7 cm*2 5.13 cm 205.00 GPa 450 cm*3	Total beam span L = Web depth d = Web thickness t = Overall depth D = Overall breadth B = Moment of inertia Ix = Plastic modulus Sx = Root radius r =		203.2 203.6 4570	mm mm mm cm^4 cm^3		
Forces in beam		Beam bearing desig	l details				
Moment=57.39 kNrShear Force=39.58 kNAxial Force=0.00 kN		Restraint Condition Co Restraint Condition Co			1.0 + 2 x E 1.0 + 2 x E		
Classification of cross-section Parameter ϵ =	0.880						
Web $d/t =$ Web $(d/t)/\epsilon =$	22.33 25.37 ≤ 80	Class 1 plastic					
Flanges b/t = Flanges (b/t)/ε =	9.25 10.51 ≤ 15	Class 3 semi-compac					
Sec	ction is class 3 semi-comp	pact					
Web (d/t)/ε = Shear capacity Ρv =	463.04 mm (Av = tD, UC se 25.37 ≤ 70 (Web does no 311.63 kN	ot need to be checked for	shear bucł	(ling)			
Design shear force =	39.58 kN	OK					
Moment capacity Design bending moment M= Moment capacity low shear Mc =	57.39 kNm 159.75 kNm (Mc = py*Z)	ок					
Effective length for lateral-torsional bucklir Total Beam Span =	ng 5800 mm						
Effective length Le = Slenderness ratio λ =	6206 mm 120.98						
Equivalent slenderness Buckling parameter u = Torsional index x = Slenderness factor v = Ratio βw = Equivalent slenderness λLT = Limiting slenderness λL0 = λLT > λL0 (Allowance should be made for t	0.847 17.7 0.740 0.905 (Z/S) 72.15 30.20 lateral-torsional buckling)						
Bending strenght Bending strenght ρb =	214.69 N/mm^2 (With Tab	le 16)					
Buckling resistance moment Equivalent uniform moment factor mLT = Buckling resistance moment Mb = Design bending moment	1.00 (Conservative appro 96.61 kNm 57.39 kNm	oach) OK					
	23.200 mm (L/250) 14.248 mm	ок					
Vertical imposed load deflection Limiting deflection = Maximum deflection =	16.111 mm (L/360) 7.801 mm	ОК					
STEEL BEAM B10 = 203 x 203 x 46 UKC							

$H_{\rm p}$ r		C T	:			0						
•	, AD					Structu	ural Calcu	ulations				
In partnership wit	D & P Solutio		Calculation 23-1806-0			Rev B	Des. DL	Chkd. DK	Chkd. DK		Date 21.02.24	Ļ
BEAM B11 Beam Span L =	6.60 m Load Positioned	Element	٦									
_oad 215mm/Cavity Wall Timber floor (1st) Ceiling Roof (sloping) 33	Interference Interference from (m) to (m) 0.00 6.60 0.00 6.60 0.00 6.60 0.00 6.60 0.00 6.60 0.00 6.60 0.00 6.60 0.00 6.60 0.00 6.60 0.00 6.60	Span/Height 4.05 m 4.30 m 4.30 m 0.00 m 6.60 m 0.00 m	/ / /	1.00 2.00 2.00 2.00 1.00	= = = =	4.05 2.15 2.15 2.15 0.00	m m m	(LHS)				
JDL LOADING JDL Dead Loading Beam Self Weight 215mm/Cavity Wall	4.20 kN/m2	x 4.0	5 m =	1.18 17.01	kN/m kN/m	x x	1.40 1.40			kN/m kN/m		
Timber floor (1st) Ceiling Roof (sloping) 33	1.10 kN/m2 0.45 kN/m2 1.00 kN/m2 0.00 kN/m2 18.16 kN 0.00 kN	x 2.1 x 2.1 x 0.0 / 6.6	5 m = 5 m = 5 m = 0 m = 0 m = 0 m =	0.97 2.15 0.00 2.75 0.00	kN/m kN/m kN/m kN/m kN/m kN/m	x x x x x x	1.40 1.40 1.40 1.40 1.40 1.40	=	1.35 3.01 0.00 3.85 0.00	kN/m kN/m kN/m kN/m kN/m kN/m	_	
JDL Imposed Load 15mm/Cavity Wall Timber floor (1st) Ceiling Roof (sloping)	0.00 kN/m2 1.50 kN/m2 0.25 kN/m2 0.75 kN/m2	x 2.1 x 2.1 x 2.1	5 m = 5 m = 5 m = 5 m = 0 m =	3.23 0.54 1.61	kN/m kN/m kN/m kN/m	x x x x	1.60 1.60 1.60 1.60	= = =	5.16 0.86 2.58	kN/m kN/m kN/m kN/m		
33	0.00 kN/m2 11.60 kN 0.00 kN	/ 6.6	0 m = 0 m =	1.76 0.00	kN/m kN/m kN/m kN/m	× × ×	1.60 1.60 1.60	=	2.81 0.00	kN/m kN/m kN/m	_	
Point Load P1 @ From Beam = DL = L =	11.86 kN x	+ 1.00 x (MAX) + 1.0 1.40 = 16.6 1.60 = 22.9	1 kN		Point Loa From Bea DL IL		3.65 1.00 x 11.29 0.00	EB1(MAX) kN x	1.40 = 1.60 =		0 kN 0 kN	
Point Load P3 @ From Beam = DL = L =	0.00 kN x		(MAX) 0 kN 0 kN									
Ra = unf. DL = unf. IL =	97.27 kN	<u>.</u>	<u>0 0 </u>	P2] , , , , ,		- ₽		Rb = nf. DL = unf. IL =	191.2 100.2 31.8	7 kN	
ORCES IN BEAM		▲ Ra	DEFLECT	ION CRITE	RIA		Rb		F STEEL E	BEAM B11	I	
Moment Shear Force Axial Force	= 347.51 = 191.26 = 0.00	3 kN	L/300; Bri	ittle finishes posed loads	(all loads)			Shear cap Moment c	acity apacity esistance n		24.49 51.40 80.59 84.02	% %
STEEL BEAM B11 : BEARING CHECK	= 305 x 305 x 118 UK	<u>(C S355</u> <u>BEAM W</u>	ITH PLATE.	-							beam weigh	s over 500
Beam No	Total Vertical Load From kN	Type of Support	Charact. Compr. Strength fk, N/mm2	Local Strength γb*fk/γm N/mm2	Bearing Length mm	Bearing Width mm	Stress Below Bearing N/mm2	Padstone Length mm	Padstone Width mm	Ecc mm	Stress Below Padstone N/mm2	Summai
B11 (LHS):	B11 183.59	Beam Connection										
B11 (RHS): Beam Support Su B11 (LHS): B11 (RHS):	Provide Steel Beam/	Beam Connection		1		1	1	Restraint	aring desig Condition C Condition C	oef. Supp	ort A:	1.2 + 2 x 1.2 + 2 x

$\mathbb{R} \to \mathbb{C}$		Beeches, Lor	g Meado	w, Gorin	g on Tha	mes RG89E0	9
	C 1 Subject		<u> </u>				
			Structi	ural Calcu	ilations		
In partnership with	tions Calc	ulation Number	Rev	Des.	Chkd.	Chkd.	Date
D & P Solu	23-	1806-C01	В	DL	DK	DK	21.02.24
STEEL BEAM B11 - DESIGN DUE TO	<u>) BS 5950-1</u>						
	Properties of 305 x 305	x 118 UKC Section					
Design strength of steel py = Half of flange b =	345.00 N/mm^2 153.70 mm	Total beam span L = Web depth d =		6.60 246.70			
Flange thickness T =	18.7 mm	Web thickness t =		12.0			
Area of cross-section A =	150 cm^2 7.77 cm	Overall depth D = Overall breadth B =		314.5 307.4			
Rad of gyration (minor axis) r = Modulus of elasticity E =	205.00 GPa	Moment of inertia Ix =		27700			
Elastic modulus Zx =	1760 cm^3	Plastic modulus Sx =			cm^3		
		Root radius r =		15.20			
Forces in beam		Beam bearing desig	n details				
	7.51 kNm	Restraint Condition C			1.2 + 2 x [
	1.26 kN 0.00 kN	Restraint Condition C	oef. Suppo	rt B:	1.2 + 2 x [)	
Classification of cross-section Parameter ε =	0.893						
Web d/t =	20.56						
Web $(d/t)/\epsilon =$	23.03 ≤ 80	Class 1 plastic					
Flanges b/t = Flanges (b/t)/ε =	8.22 9.21 ≤ 10	Class 2 compact					
	Section is class 2 com	·					
Shear capacity							
Shear area Av =	3774.00 mm (Av = tD,						
Web $(d/t)/\epsilon =$		pes not need to be checked fo	shear buc	kling)			
Shear capacity Pv = Design shear force =	781.22 kN 191.26 kN	ок					
Moment capacity							
Design bending moment M= Moment capacity low shear Mc =	347.51 kNm 676.20 kNm	ОК					
Effective length for lateral-torsional							
Total Beam Span =	6600 mm						
Effective length Le =	8549 mm						
Slenderness ratio λ =	110.03						
Equivalent slenderness Buckling parameter u =	0.852						
Torsional index x =	16.1						
Slenderness factor v =	0.740						
Ratio βw =	1.000						
Equivalent slenderness λLT =	69.37						
Limiting slenderness $\lambda L0 = \lambda LT > \lambda L0$ (Allowance should be ma	30.63 ade for lateral-torsional buc	kling)					
Bending strenght							
Bending strenght pb =	220.02 N/mm^2 (Wi	th Table 16)					
Buckling resistance moment Equivalent uniform moment factor mLT	= 1.00 (Conservative	approach)					
Buckling resistance moment Mb =	431.25 kNm	, approacing					
Design bending moment	347.51 kNm	ОК					
Vertical dead & imposed load deflect	tion						
Limiting deflection = Maximum deflection =	22.000 mm (L/300; B 18.483 mm	rittle finishes) OK					
Vertical imposed load deflection							
Limiting deflection =	18.333 mm (L/360)						
Maximum deflection =	4.576 mm	ок					
STEEL BEAM B11 = 305 x 305 x 118	UKC						

H p r	o j e	C t Subj	ect		Structu	ural Calcu	lations			
In partnership with	h D & P Solutio	ns	Calculation 23-1806-0		Rev B	Des. DL	Chkd. DK	Chkd. DK	Date 21.02.24	
BEAM B12 Beam Span L =	5.80 m									
Load Timber floor (1st) Lightweight Leaf Timber Partition	Load Positioned from (m) to (m) 0.00 5.80 0.00 5.80 0.00 5.80 0.00 5.80 0.00 5.80 0.00 5.80 0.00 5.80 0.00 5.80 0.00 5.80 0.00 5.80	Element Span/Height 5.45 m 2.20 m 2.20 m 0.00 m 0.00 m 0.00 m 0.00 m	 	2.00 = 1.00 = 1.00 = 1.00 = 1.00 =	2.73 2.20 2.20 0.00 0.00	m m m				
IDL LOADING IDL Dead Loading eam Self Weight imber floor (1st) ightweight Leaf imber Partition	1.10 kN/m2 1.10 kN/m2 0.35 kN/m2 0.00 kN/m2 0.00 kN/m2 0.00 kN 0.00 kN	x 2 x 2 x 1 /	2.73 m = 2.20 m = 2.20 m = 0.00 m = 0.00 m = 0.00 m = 0.00 m =	0.60 kN/m 3.00 kN/m 2.42 kN/m 0.77 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 6.79 kN/m	x x x x x x x x	1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	= = = = = =	0.84 kN/i 4.20 kN/i 3.39 kN/i 1.08 kN/i 0.00 kN/i 0.00 kN/i 0.00 kN/i 9.50 kN/i	m m m m m m	
IDL Imposed Loadi imber floor (1st) ightweight Leaf imber Partition	ing 1.50 kN/m2 0.00 kN/m2 0.00 kN/m2 0.00 kN/m2 0.00 kN/m2 0.00 kN 0.00 kN	x 2 x 2 x 1 /	2.73 m = 2.20 m = 2.20 m = 0.00 m = 0.00 m = 0.00 m = 0.00 m =	4.09 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 4.09 kN/m	x x × × ×	1.60 1.60 1.60 1.60 1.60 1.60		6.54 kN/r 0.00 kN/r 0.00 kN/r 0.00 kN/r 0.00 kN/r 0.00 kN/r 6.54 kN/r	m m im im im im	
rom Beam = DL = _ =		1.40 = 2	00 x (MAX) 2.29 kN 7.41 kN	Point Lo From Bea DL IL		0.00 1.00 x (0.00 0.00	MAX) kN x	1.40 = 1.60 =	0.00 kN 0.00 kN	
	1.00 x B2(RHS) + 15.92 kN x 10.88 kN x 0.00 m 1.00 x (MAX) + 1.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2.29 kN 7.41 kN x (MAX)	From Bea	am = =	1.00 x (0.00	MAX) kN x			
From Beam = DL = - = Point Load P3 @ from Beam = DL =	1.00 x B2(RHS) + 15.92 kN x 10.88 kN x 0.00 m 1.00 x (MAX) + 1.4 0.00 kN x	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2.29 kN 7.41 kN x (MAX) 0.00 kN	From Bea	am = =	1.00 x (0.00	MAX) kN x kN x			
rom Beam = L = oint Load P3 @ rom Beam = L = L = unf. DL = unf. IL = ORCES IN BEAM	1.00 x B2(RHS) + 15.92 kN x 10.88 kN x 0.00 m 1.00 x (MAX) + 1. 0.00 kN x 0.00 kN x 0.00 kN x	1.40 = 2 1.60 = 1 00 x (MAX) + 1.00 1.40 = 1 1.60 = 1 Ra kNm kN kN	2.29 kN 7.41 kN × (MAX) 0.00 kN 0.00 kN <u>DEFLECT</u> L/250 (all	P1	am =	1.00 × (0.00 0.00	MAX) kN x kN x USAGE C Shear cap	Rb = nf. DL = unf. IL = DF STEEL BEAM pacity esistance mome	0.00 kN 66.37 kN 27.64 kN 17.30 kN M B12 15.82 53.69	% %
rom Beam = L = oint Load P3 @ rom Beam = L = L = unf. DL = unf. IL = ORCES IN BEAM Moment hear Force xial Force	1.00 x B2(RHS) + 15.92 kN x 10.88 kN x 0.00 m 1.00 x (MAX) + 1. 0.00 kN x 0.00 kN x 0.00 kN x 27.64 kN 27.64 kN 27.6	1.40 = 2 1.60 = 1 00 x (MAX) + 1.00 1.40 = 1 1.60 = 1 Ra kNm kN kN	2.29 kN 7.41 kN × (MAX) 0.00 kN 0.00 kN <u>DEFLECT</u> L/250 (all	From Ber DL IL TON CRITERIA loads) posed loads only)	am =	1.00 × (0.00 0.00	MAX) kN x kN x USAGE C Shear cap Moment c Buckling r	Rb = nf. DL = unf. IL = DF STEEL BEAM pacity esistance mome eflection	0.00 kN 66.37 kN 27.64 kN 17.30 kN M B12 15.82 53.69 ent 89.86	% %
rom Beam = L = oint Load P3 @ rom Beam = L = L = unf. DL = unf. DL = unf. IL = ORCES IN BEAM toment hear Force xial Force TEEL BEAM B12 = EARING CHECK Beam No	1.00 x B2(RHS) + 15.92 kN x 10.88 kN x 0.00 m 1.00 x (MAX) + 1. 0.00 kN x 0.00 kN x 0.00 kN x 66.37 kN 27.64 kN ∠ 17.30 kN ∠ = 125.03 = 66.37 = 0.00 = 203 x 203 x 60 UKC	1.40 = 2 1.60 = 1 00 × (MAX) + 1.00 1.40 = 1 1.60 = 1	2.29 kN 7.41 kN × (MAX) 0.00 kN 0.00 k	From Ber DL IL TON CRITERIA loads) posed loads only)	am = = = U	1.00 × (0.00 0.00 Rb	MAX) kN x kN x USAGE C Shear cap Moment c Buckling r Vertical de Padstone Length	Rb = nf. DL = unf. IL = DF STEEL BEAM pacity esistance mome eflection	0.00 kN 66.37 kN 27.64 kN 17.30 kN M B12 ent 53.69 92.79 Ecc Stress Below Padstone	% %

		Beeches, Lon	g Meado	w, Goring	g on Tha	mes RG89E0	3
	LIN C						
			Structu	iral Calcu	llations		
In partnership with D & P Solut	ions	ation Number	Rev	Des.	Chkd.	Chkd.	Date
	23-10	306-C01	В	DL	DK	DK	21.02.24
STEEL BEAM B12 - DESIGN DUE TO	<u>BS 5950-1</u>						
	Properties of 203 x 203 x						
Design strength of steel py = Half of flange b = Flange thickness T = Area of cross-section A = Rad of gyration (minor axis) r = Modulus of elasticity E = Elastic modulus Zx =	355.00 N/mm ² 102.90 mm 14.2 mm 76.4 cm ² 5.20 cm 205.00 GPa 584 cm ³	Total beam span L = Web depth d = Web thickness t = Overall depth D = Overall breadth B = Moment of inertia lx = Plastic modulus Sx = Root radius r =		209.6 205.8 6120	mm mm mm cm^4 cm^3		
Forces in beam		Beam bearing design	ı details				
Shear Force = 66.	03 kNm 37 kN 00 kN	Restraint Condition Co Restraint Condition Co			1.0 + 2 x E 1.2 + 2 x E		
Classification of cross-section Parameter ε =	0.880						
Web d/t = Web (d/t)/ɛ =	17.11 19.44 ≤80	Class 1 plastic					
Flanges b/t = Flanges (b/t)/ε =	7.25 8.23 ≤ 9	Class 1 plastic					
	Section is class 1 plastic						
Shear capacity Shear area Av = Web (d/t)/ε = Shear capacity Pv =	1970.24 mm (Av = tD, U 19.44 ≤ 70 (Web doe 419.66 kN	C section) s not need to be checked for	shear buc	kling)			
Design shear force =	66.37 kN	ОК					
Moment capacity Design bending moment M= Moment capacity low shear Mc =	125.03 kNm 232.88 kNm	ок					
Effective length for lateral-torsional b							
Total Beam Span = Effective length Le = Slenderness ratio λ =	5800 mm 6799 mm 130.75						
Equivalent slenderness Buckling parameter $u =$ Torsional index $x =$ Slenderness factor $v =$ Ratio $\beta w =$ Equivalent slenderness $\lambda LT =$ Limiting slenderness $\lambda L0 =$ $\lambda LT > \lambda L0$ (Allowance should be made	0.846 14.1 0.659 1.000 72.91 30.20 de for lateral-torsional buckl	ing)					
Bending strenght Bending strenght ρb =	212.12 N/mm^2 (With	Table 16)					
Buckling resistance moment Equivalent uniform moment factor mLT = Buckling resistance moment Mb = Design bending moment	= 1.00 (Conservative a 139.15 kNm 125.03 kNm	pproach) OK					
Vertical dead & imposed load deflect Limiting deflection = Maximum deflection =	ion 23.200 mm (L/250) 21.526 mm	ок					
Vertical imposed load deflection Limiting deflection = Maximum deflection =	16.111 mm (L/360) 8.354 mm	ок					
Limiting deflection =	8.354 mm	ок					

			ect	Beeches, Lo		. 0					
n pr	o j e	c t			Structu	ural Calcul	ations				
In partnership wi	D & P Solutio	ons	Calculation 23-1806-0		Rev B	Des. DL	Chkd. DK	Chkd. DK		Date 21.02.24	1
BEAM B13 Beam Span L =	2.92 m										
_oad New Cavity Wall Roof (sloping)	Load Positioned from (m) to (m) 0.00 2.92 0.00 2.92 0.00 2.92 0.00 2.92 0.00 2.92 0.00 2.92 0.00 2.92 0.00 2.92 0.00 2.92 0.00 2.92	Element Span/Height 2.80 m 5.40 m 0.00 m 0.00 m 0.00 m 0.00 m 0.00 m	 	1.00 = 2.00 = 1.00 = 1.00 = 1.00 =	2.80 2.70 0.00 0.00 0.00	m m					
UDL LOADING UDL Dead Loading Beam Self Weight New Cavity Wall Roof (sloping)	3.20 kN/m2 1.00 kN/m2 0.00 kN/m2 0.00 kN/m2 0.00 kN/m2 0.00 kN 0.00 kN	x × × /	2.80 m = 2.70 m = 0.00 m = 0.00 m = 0.00 m = 0.00 m =	0.35 kN/m 8.96 kN/m 2.70 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 12.01 kN/m	x x × × × ×	1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40		12.54 3.78 0.00 0.00 0.00 0.00 0.00	kN/m kN/m kN/m kN/m kN/m kN/m kN/m kN/m	_	
UDL Imposed Load New Cavity Wall Roof (sloping)	ding 0.00 kN/m2 0.00 kN/m2 0.00 kN/m2 0.00 kN/m2 0.00 kN/m2 0.00 kN	x × × /	2.80 m = 2.70 m = 0.00 m = 0.00 m = 0.00 m = 0.00 m =	0.00 kN/m 2.03 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m	x × × × ×	1.60 1.60 1.60 1.60 1.60 1.60 1.60	= = = =	3.24 0.00 0.00 0.00 0.00 0.00	kN/m kN/m kN/m kN/m kN/m kN/m		
				2.03 kN/m	_			3.24	kN/m		
Point Load P1 @ From Beam = DL = L =	27.64 kN x		1.00 x (MAX) 88.70 kN 27.67 kN	2.03 kN/m Point Lo From Bea DL IL	ad P2 @	0.00 r 1.00 x (N 0.00 k 0.00 k	MAX) KN X	3.24 1.40 = 1.60 =	0.0	00 kN 00 kN	
From Beam = DL = L = Point Load P3 @ From Beam = DL =	1.00 x B12(MAX) 27.64 kN x 17.30 kN x 0.00 m 1.00 x (MAX) + 1	1.40 = 3 1.60 = 2 .00 × (MAX) + 1.00 1.40 =	88.70 kN 27.67 kN D x (MAX)	Point Lo From Bea DL	ad P2 @ am = =	1.00 x (≬ 0.00 ∤	MAX) KN X	1.40 =	0.0		
From Beam = DL = L = Point Load P3 @ From Beam = DL =	1.00 x B12(MAX) 27.64 kN x 17.30 kN x 0.00 m 1.00 x (MAX) + 1 0.00 kN x 0.00 kN x	1.40 = 3 1.60 = 2 .00 × (MAX) + 1.00 1.40 =	88.70 kN 27.67 kN 0 x (MAX) 0.00 kN	Point Lo From Bea DL IL	ad P2 @ am = =	1.00 x (≬ 0.00 ∤	VIAX) (N X (N X	1.40 =	0.0 0.0 71.7 35.2		
From Beam = DL = Point Load P3 @ From Beam = DL = L = Ra = unf. DL =	1.00 x B12(MAX) 27.64 kN x 17.30 kN x 0.00 m 1.00 x (MAX) + 1 0.00 kN x 0.00 kN x 0.00 kN x 9.15 kN 27.48 kN 2 9.18 kN 2	1.40 = 3 1.60 = 2 .00 × (MAX) + 1.00 1.40 = 1.60 =	18.70 kN 17.67 kN 0 x (MAX) 0.00 kN 0.00 kN	Point Lo From Bea DL IL	ad P2 @ am = = =	1.00 × (f 0.00 k 0.00 k	VIAX) (N X (N X	1.40 = 1.60 = Rb = nf. DL =	0.0 0.0 71.7 35.2 14.0	79 KN 24 KN 33 KN	
From Beam = DL = Point Load P3 @ From Beam = DL = L = L = unf. DL = unf. IL =	 1.00 x B12(MAX) 27.64 kN x 17.30 kN x 0.00 m 1.00 x (MAX) + 1 0.00 kN x 0.00 kN x 0.00 kN x 9.15 kN 9.18 kN Z 9.18 kN Z 	1.40 = 3 1.60 = 2 .00 × (MAX) + 1.00 1.40 = 1.60 =	18.70 kN 17.67 KN 0 x (MAX) 0.00 kN 0.00 kN 0.00 kN DEFLECT L/250 (all	Point Lo From Bea DL IL IL	ad P2 @ am = = =	1.00 × (f 0.00 } 0.00 } Rb	VIAX) (N X (N X	1.40 = 1.60 = nf. DL = unf. IL = DF STEEL E pacity	0.0 0.0 71.7 35.2 14.0	79 KN 24 KN 33 KN	
From Beam = DL = Point Load P3 @ From Beam = DL = UL = UL = Corces in Beam Moment Shear Force Vial Force STEEL BEAM B13 :	 1.00 x B12(MAX) 27.64 kN x 17.30 kN x 0.00 m 1.00 x (MAX) + 1 0.00 kN x 0.00 kN x 0.00 kN x 9.15 kN 9.18 kN Z 9.18 kN Z 	1.40 = 3 1.60 = 2 .00 × (MAX) + 1.00 1.40 = 1.60 =	18.70 kN 17.67 kN 0 x (MAX) 0.00 kN 0.00 kN 0.00 kN ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	Point Lo From Bes DL IL IL	ad P2 @ am = = =	1.00 × (f 0.00 } 0.00 } Rb	VIAX) (N X (N X USAGE C Shear cap	1.40 = 1.60 = Rb = nf. DL = unf. IL = DF STEEL E pacity apacity	0.0 0.0 71.7 35.2 14.0	29 kN 24 kN 33 kN <u>3</u> 11.29	%
From Beam = DL = L = Point Load P3 @ From Beam = DL = L = U = U = U = U = U = U = U = U	1.00 x B12(MAX) 27.64 kN x 17.30 kN x 0.00 m 1.00 x (MAX) + 1 0.00 kN x 0.00 kN x 0.00 kN x 27.48 kN 2 9.18 kN 2 = 62.88 = 71.75 = 0.00	1.40 = 3 1.60 = 2 .00 × (MAX) + 1.00 1.40 = 1.60 =	18.70 kN 17.67 kN 0 x (MAX) 0.00 kN 0.00 kN 0.00 kN ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	Point Lo From Ber DL IL P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1	ad P2 @ am = = =	1.00 × (f 0.00 F 0.00 F Rb	VIAX) (N X (N X USAGE C Shear cap Voment c	1.40 = 1.60 = Rb = nf. DL = unf. IL = DF STEEL E pacity apacity eflection	0.0 0.0 71.7 35.2 14.0	29 kN 24 kN 23 kN 3 3 11.29 66.21	%
From Beam = DL = Point Load P3 @ From Beam = DL = L = C = C = C = C = C = C = C = C	1.00 x B12(MAX) 27.64 kN x 17.30 kN x 0.00 m 1.00 x (MAX) + 1 0.00 kN x 0.00 kN x 0.00 kN x 27.48 kN 2 = 62.86 = 71.76 = 0.00 = 200x100x8.0 RHS 1 Vertical Load	1.40 = 3 1.60 = 2 .00 x (MAX) + 1.00 1.40 = 1.60 =	18.70 kN 17.67 kN D x (MAX) 0.00 kN 0.00 kN	Point Lo From Bes DL IL P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1	ad P2 @ am = = =	1.00 × (f 0.00 F 0.00 F Rb	USAGE C USAGE C Shear cap Moment c Vertical de Padstone Length	1.40 = 1.60 = Rb = nf. DL = unf. IL = DF STEEL E pacity apacity eflection Padstone Width	0.0 0.0 71.7 35.2 14.0 BEAM B1	29 kN 24 kN 24 kN 33 kN 3 3 11.29 66.21 63.99 63.99 Stress Below Padstone	%

REGE	Project	Project Beeches, Long Meadow, Goring on Thames RG89EG								
proje	C T		Struct	ural Calcu	ulations					
In partnership with										
D & P Solutio	ns 23-180	ion Number 6-C01	Rev B	Des. DL	Chkd. DK	Chkd. DK	Date 21.02.24			
STEEL BEAM B13 - DESIGN DUE TO B	<u>S 5950-1</u>									
	Properties of 200x100x8.0 F	RHS Section								
Design strength of steel py = Flange dimension (RHS section) b = Flange thickness T = Area of cross-section A = Rad of gyration (minor axis) r = Modulus of elasticity E = Elastic modulus Zx =	355.00 N/mm^2 76.00 mm 8.0 mm 44.8 cm^2 4.06 cm 205.00 GPa 223 cm^3	M Web depth d = 176.00 mm N Web thickness t = 8.0 mm ^2 Overall depth D = 200.00 mm Overall breath B = 100.00 mm a Moment of inertia Ix = 2230 cm^4								
Forces in beam		Beam bearing desi	gn details							
Moment=62.89Shear Force=71.79Axial Force=0.00		Restraint Condition Restraint Condition			1.2 + 2 x D 1.2 + 2 x D					
Classification of cross-section Parameter ϵ =	0.880									
Webs d/t = Webs (d/t)/ε =	22.00 25.00 ≤ 64	Class 1 plastic								
Flanges b/t = Flanges (b/t)/ε =	9.50 10.79 ≤ min(28; 80-d/t/ε	:) Class 1 plastic								
	Section is class 1 plastic									
Shear capacity Shear area Av = Webs $(d/t)/\varepsilon =$ Shear capacity Pv = Design shear force = Moment capacity	2986.67 mm (Av = AD/(D+ 25.00 ≤ 70 (Web does r 636.16 kN 71.79 kN		or shear bud	ckling)						
Design bending moment M= Moment capacity low shear Mc =	62.89 kNm 95.00 kNm	ок								
Effective length for lateral-torsional bu										
Total Beam Span = Effective length Le =	2920 mm 3904 mm									
Slenderness ratio λ = Limiting slenderness ratio Limiting slenderness ratio	96.16 263.38 (Table 15) λ is le	ss than limiting slende	rness ratio	, no allowa	ince need l	be made for	lateral-torsional buckling			
Vertical dead & imposed load deflection	n									
Limiting deflection = Maximum deflection =	11.680 mm (L/250) 7.474 mm	ок								
Vertical imposed load deflection Limiting deflection = Maximum deflection =	8.111 mm (L/360) 2.183 mm	ОК								
STEEL BEAM B13 (200x100x8.0 RHS) I	S DESIGNED CORRECTLY									

tipr	oje	C †	ct			Structu	Iral Calcu	Ilations				
In partnership wit						Olidold						
	D & P Solutio	ins	Calculation 23-1806-0			Rev B	Des. DL	Chkd. DK	Chkd. DK		Date 21.02.24	1
BEAM B14 Beam Span L =	4.04 m											
oad Iew Cavity Wall Bi-fold Doors	Load Positioned from (m) to (m) 0.00 4.04 0.00 4.04 0.00 4.04 0.00 4.04 0.00 4.04 0.00 4.04 0.00 4.04 0.00 4.04 0.00 4.04 0.00 4.04	Element Span/Height 3.50 m 2.10 m 0.00 m 0.00 m 5.90 m 0.00 m	 	1.00 1.00 1.00 1.00 1.00	= = =	3.50 2.10 0.00 0.00 0.00	m m m	Avg. Due t (LHS)	o window op	ening		
DL LOADING IDL Dead Loading leam Self Weight lew Cavity Wall ii-fold Doors	3.20 kN/m2 0.50 kN/m2 0.00 kN/m2 0.00 kN/m2 3.32 kN 0.00 kN	x 2 x 0 x 0 x 0 / 5	.50 m = .10 m = .00 m = .00 m = .90 m = .00 m =		kN/m kN/m kN/m kN/m kN/m kN/m	x x x × × x x x	1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	= = = =	0.32 15.68 1.47 0.00 0.00 0.00 0.79 0.00 18.25	kN/m kN/m kN/m kN/m kN/m kN/m	_	
IDL Imposed Load lew Cavity Wall bi-fold Doors	ling 0.00 kN/m2 0.00 kN/m2 0.00 kN/m2 0.00 kN/m2 2.15 kN 0.00 kN	x 2 x 0 x 0 x 0 / 5	.50 m = .10 m = .00 m = .00 m = .90 m = .00 m =	0.00 0.36 0.00	kN/m	X X X X X X	1.60 1.60 1.60 1.60 1.60 1.60	= = =	0.00 0.00 0.00 0.00 0.58 0.58	kN/m kN/m kN/m kN/m kN/m kN/m	_	
Point Load P1 @ From Beam = DL = - =			x (MAX) .00 kN .00 kN		Point Loa From Bear DL IL		0.00 1.00 x 0.00 0.00	(MAX) kN x	1.40 = 1.60 =) kN) kN	
Point Load P3 @ From Beam = DL = - =	0.00 kN x	00 x (MAX) + 1.00 1.40 = 0 1.60 = 0										
Ra = unf. DL = unf. IL =	26.34 kN	<u> </u>	<u>0</u> 0	<u>\$</u> {	<u>}</u>	<u>.</u>	T Rb		Rb = nf. DL = nf. IL =	38.05 26.34 0.73		
ORCES IN BEAM		I	DEFLECT	ION CRITE	<u>RIA</u>			USAGE O	F STEEL BE	EAM B14	Ŀ	
foment Shear Force xial Force	= 38.43 = 38.05 = 0.00		L/250 (all L/360 (im	loads) posed loads	only)			Shear cap Moment ca	apacity		9.34 60.55	%
TEEL BEAM B14 :	<u>= 200x100x5.0 RHS </u>	<u>8355 BEAM</u>	WITH PLATE.	SEE DETA	ILS ON SI	JMMARY P.	AGE	Vertical de	TIECTION		93.75	%
Beam No	Total Vertical Load From kN	Type of Support	Charact. Compr. Strength fk, N/mm2	Local Strength yb*fk/ym N/mm2	Bearing Length mm	Bearing Width mm	Stress Below Bearing N/mm2	Padstone Length mm	Padstone Width mm	Ecc	Stress Below Padstone N/mm2	Summa
	B14 38.05	3.6N Blocks	3.5	1.25xfk/3.5 1.25 1.25xfk/3.5	100	100	3.81	440	100	0	0.86	Satisfact
B14 (RHS):	B14 38.05	3.6N Blocks	3.5	1.25	100	100	3.81	440	100	0	0.86	Satisfact

		Beeches, Lo	ng Meado	ow, Gorin	g on Thai	mes RG89E0	3	
	C T		Struct	ural Calcu	ulations			
In partnership with							Date	
D & P Solutio		Calculation Number Rev Des. Chkd. Chkd. 23-1806-C01 B DL DK DK						
STEEL BEAM B14 - DESIGN DUE TO B	<u>S 5950-1</u>							
	Properties of 200x100x5.0	RHS Section						
Design strength of steel py = Flange dimension (RHS section) b = Flange thickness T = Area of cross-section A = Rad of gyration (minor axis) r = Modulus of elasticity E = Elastic modulus Zx =	355.00 N/mm^2 85.00 mm 5.0 mm 28.7 cm^2 4.19 cm 205.00 GPa 149 cm^3	Total beam span L = Web depth d = Web thickness t = Overall depth D = Overall breadth B = Moment of inertia Ix Plastic modulus Sx =		200.00 100.00 1500	mm mm mm			
Forces in beam		Beam bearing desig	yn details					
Moment=38.43Shear Force=38.05Axial Force=0.00		Restraint Condition (Restraint Condition (1.2 + 2 x E 1.2 + 2 x E			
Classification of cross-section Parameter ε =	0.880							
Webs d/t = Webs (d/t)/ε =	37.00 42.04 ≤64	Class 1 plastic						
Flanges b/t = Flanges (b/t)/ε =	17.00 19.32 ≤ min(28; 80-d/t/a	ε) Class 1 plastic						
	Section is class 1 plastic							
Shear capacity Shear area Av = Webs $(d/t)/\varepsilon$ = Shear capacity Pv = Design shear force =	1913.33 mm (Av = AD/(D+ 42.04 ≤ 70 (Web does 407.54 kN 38.05 kN	+B), RHS section) not need to be checked fo OK	or shear buo	ckling)				
Moment capacity Design bending moment M= Moment capacity low shear Mc =	38.43 kNm 63.47 kNm	ок						
Effective length for lateral-torsional but Total Beam Span =	ckling 4040 mm							
Effective length Le = Slenderness ratio λ =	5248 mm 125.25							
Limiting slenderness ratio Limiting slenderness ratio	263.38 (Table 15) λ is l ε	ess than limiting slende	rness ratio	, no allowa	ince need l	be made for lat	eral-torsional buckling	
Vertical dead & imposed load deflection Limiting deflection = Maximum deflection =	n 16.160 mm (L/250) 15.149 mm	ок						
Vertical imposed load deflection Limiting deflection = Maximum deflection =	11.222 mm (L/360) 0.411 mm	ок						
STEEL BEAM B14 (200x100x5.0 RHS) IS	S DESIGNED CORRECTLY							

REGE		ct	Beeches, Long	g Meadow,	, Goring	on Thar	nes RG89EG	
proje	C T	ect		Structura	I Calcul	ations		
In partnership with D & P Solution	ons	Calculation Nu 23-1806-C01	mber	Rev B	Des. DL	Chkd. DK	Chkd. DK	Date 21.02.24
LOADS ACTING ON THE FOOTING (BE	LOW COLUMN C2	2)						
Load Positioned Load from (m) to (m) New Cavity Wall 0.00 1.80 Roof (sloping) 0.00 1.00 - 0.00 1.00 - 0.00 1.00 - 0.00 1.00 - 0.00 1.00 - 0.00 0.90 L1. 0.00 0.90	Element Span/Height 7.80 m 5.40 m 0.00 m 0.00 m 2.10 m 1.40 m	/ / / /	1.00 = 2.00 = 1.00 = 1.00 = 1.00 =	7.80 m 2.70 m 0.00 m 0.00 m 0.00 m		1 x B13 (Lł 1 x L1. (MA		Load Dispersion Length 2*D 2*D D D
UDL LOADING UDL Dead Loading								
New Cavity Wall 3.20 kN/m2 Roof (sloping) 1.00 kN/m2 - 0.00 kN/m2 - 0.00 kN/m2 - 0.00 kN/m2 B13 27.48 kN L1. 14.46 kN	x 2 x 0 x 0 x 0 x 0 / 2	.80 m = .70 m = .00 m = .10 m = .40 m =	24.96 kN/m 2.70 kN/m 0.00 kN/m 0.00 kN/m 13.08 kN/m 10.33 kN/m 51.07 kN/m	x x x x x x x	1.00 1.00 1.00 1.00 1.00 1.00 1.00	= = = = =	24.96 kN/m 2.70 kN/m 0.00 kN/m 0.00 kN/m 13.08 kN/m 10.33 kN/m 51.07 kN/m	_
UDL Imposed Loading New Cavity Wall 0.00 kN/m2 Roof (sloping) 0.75 kN/m2 - 0.00 kN/m2 - 0.00 kN/m2 - 0.00 kN/m2 B13 9.18 kN L1. 2.03 kN	x 2 x 0 x 0 x 0 / 2	2.80 m = 2.70 m = 0.00 m = 0.00 m = 2.10 m = 0.40 m =	0.00 kN/m 2.03 kN/m 0.00 kN/m 0.00 kN/m 4.37 kN/m 1.45 kN/m 7.84 kN/m	x x × x x x x	1.00 1.00 1.00 1.00 1.00 1.00 1.00		0.00 kN/m 2.03 kN/m 0.00 kN/m 0.00 kN/m 4.37 kN/m 1.45 kN/m 7.84 kN/m	_
DL = 11.86 kN x		.00 x (MAX) .86 kN .36 kN						
	.00 x (MAX) + 1.00 1.00 = 0 1.00 = 0							
DESIGN FORCES								
STRIP FOOTING OPTION Vertical Force	N =	105.96 kN	1*B10 (MA)	()+UDL*Load	d Dispersi	on Length		
Allowable Bearing Capacity of Soil	=	100.00 kN/i	m2					

R F	= (-	\mathbb{N}			Beed	ches, Lor	ng Meado	ow, Goring	g on Tha	mes RGo	9EG		
Hipr	_ `	je	c t	Subject	ct Structural Calculations									
In partnership wit	h		-	C	loulation	Number		Rev	Des.	Chkd.	Chkd.	[Date	
	D &	P Solutior	ns		3-1806-0			B	Des. DL	DK	DK		21.02.24	ļ
LOCATION: COLUN STRIP FOOTING OF														
Plan Area Required		N/Allowabl	e Bearing C	apacity of S	Soil	=	1.06	m2						
Minimum Footing Wi Minimum Footing De		W D				= =	0.60 0.90							
Plan Area Provided		W*(2*D)				=	1.08	m2						
Plan Area Required	<	Plan Area	Provided		Satisfactor	гу	(0.98)							
BEARING CHECK E	BELOW CO	OLUMN C2	PADSTON	E @ GROU	JND FLOO Charact.	R LEVEL	Bearing	Bearing	Stress	Padstone	Padstone	Ecc	Stress	1
	Vertical Load		Type Supp		Compr. Strength	Strength	Length	Width	Below	Length	Width	ECC	Below Padstone	Summary
	From	kN			fk, N/mm2	N/mm2 1.25xfk/3.5	mm	mm	N/mm2	mm	mm	mm	N/mm2	
l	C2	39.58	3.6N Blocks	S	3.5	1.25	-	-	-	440	100	0	0.90	Satisfactor
- FOOTING		RED FRO	M GROUN	D FLOOF	RLEVEL		RSIDE O	F FOOTIN	IG LEVEL	IS NOT L				
		RED FRO	M GROUN	D FLOOF	RLEVEL	TO UNDE	RSIDE O	F FOOTIN	IG LEVEL	IS NOT L				
		RED FRO	M GROUN	D FLOOF	RLEVEL	TO UNDE	RSIDE O	F FOOTIN	IG LEVEL	IS NOT L				
		RED FRO	M GROUN	D FLOOF	RLEVEL	TO UNDE	RSIDE O	F FOOTIN	IG LEVEL	IS NOT L				
		RED FRO	M GROUN	D FLOOF	RLEVEL	TO UNDE	RSIDE O	F FOOTIN	IG LEVEL	IS NOT L				
		RED FRO	M GROUN	D FLOOF	RLEVEL	TO UNDE	RSIDE O	F FOOTIN	IG LEVEL	IS NOT L				
		RED FRO	M GROUN	D FLOOF	RLEVEL	TO UNDE	RSIDE O	F FOOTIN	IG LEVEL	IS NOT L				
		RED FRO	M GROUN	D FLOOF	RLEVEL	TO UNDE	RSIDE O	F FOOTIN	IG LEVEL	IS NOT L				
		RED FRO	M GROUN	D FLOOF	RLEVEL	TO UNDE	RSIDE O	F FOOTIN	IG LEVEL	IS NOT L				
		RED FRO	M GROUN	D FLOOF	RLEVEL	TO UNDE	RSIDE O	F FOOTIN	IG LEVEL	IS NOT L				
		RED FRO	M GROUN	D FLOOF	RLEVEL	TO UNDE	RSIDE O	F FOOTIN	IG LEVEL	IS NOT L				

RFC	FN	Project	Bee	ches, Long Meado	ow, Goring	on Thai	mes RG89	EG
proj		Subject		Struct	ural Calcul	ations		
In partnership with D & F	? Solutions	Calculation 23-1806-C		Rev B	Des. DL	Chkd. DK	Chkd. DK	Date 21.02.24
Column C3 Column Height, L = 3.00	m				I	DESIGN D	OUE TO BS 5	5950-1:2000
SECTION 152 x 152 x D = 161.8mm ; B = 154.4mm ; r		S355 E = 7cm ; Ag = 47.1cm2 ; I		⊨ kN/mm2 m4 ; ly = 706cm4 ; Zx	= 273cm3 ; 2	Zy = 91.5c	m3 ; u = 0.84	48 ; x = 13.3
	1.5 * L = 4.50 1.5 * L = 4.50		Slenderne Slenderne		Lex / rx = Ley / ry =	65.69 116.28		DK DK
			Slenderne Equiv. Sle		1/[1 + 0.05 uvλy √βw]^0.25	= 0.67 = 66.54
VERTICAL LOAD		From Beam = 1.00 x (DL = IL = Eccentricity =	0.00 0.00	kN	MAX)			
From Beam = 1.00 x (MAX) + 1. DL = 0.00 IL = 0.00 Eccentricity = D/2 =	kN kN	(MAX) 	×	y	From Beam DL IL Eccentricity	=	B11(LHS) + 97.27 k 29.63 k D/2 =	
HORIZONTAL LOAD Wind Load Area Total Horizontal Load Construction Wind Load Applied in	= = = =	From Beam = 1.00 x (DL = IL = Eccentricity = 0.42 kN/m2 4.50 m2 1.91 kN Simply Supporter Major Axis (x-x)	0.00 0.00 B/2 =	kN	MAX)			
DESIGN LOADING AND MOM	ENT BS 5950							
Load Combination 1 1.4 DL + 1.6 IL		Load Combinat 1.4 DL + 1.4 W				Combina)L + 1.2 IL	tion 3 . + 1.2 WL	
Axial Force=Shear Force=Moment x-x=Moment y-y=	183.59 kN 0.00 kN 14.85 kNm 0.00 kNm	Axial Force Shear Force Moment x-x Moment y-y	= = = =	136.18 kN 1.34 kN 12.35 kNm 0.00 kNm	Shea Mom	Force ar Force ent x-x ent y-y	= = = =	152.28 kN 1.15 kN 13.47 kNm 0.00 kNm
Factored Forces Max. Axial Force, Fc Max. Shear Force Max. Major Moment x-x, Mx Max. Minor Moment y-y, My	= = =	183.59 kN 1.34 kN 14.85 kNm 0.00 kNm		Unfactored Forces Max. Axial Force DL Max. Axial Force IL Max. Shear Force Max Moment x-x Max Moment y-y			= = = =	97.27 kN 29.63 kN 0.95 kN 11.22 kNm 0.00 kNm
Compressive Strength	py = pcy = pb =	355.00 N/mm2 112.00 N/mm2 239.00 N/mm2		(table 24, curve c) (table 16 for I-section	ns, pb = py fo	r SHS sec	ctions)	
Moment Capacity (Major Axis) Moment Capacity (Minor Axis)		= 527.52 = 96.92 = 32.48 = 65.25	kNm kNm	(For SHS Sections M	1b = Mc,x)			
SUMMARY [1] Fc / Pcy [2] mLT * Mx / Mb ; mLT = 1. [3] my * My / Mc,y ; my = 1.0		= 0.35 = 0.23 = 0.00		OK OK				
DEFLECTIONS Allowable Deflection Moment from vertical loads: x-x Vertical loads max deflection: x- Moment from vertical loads: y-y Vertical loads max deflection: y- Wind load Horizontal force: x- Wind loads maximum deflection Max Deflection	x M*L^2 / 16EI M y M*L^2 / 16EI H	= 0.00 = 0.00 = 1.91	kNm mm kNm mm kN mm	ок	1	STEEL CO	DLUMN C3 =	: 152 x 152 x 37 UKC (S355)

H R F	- G F		roject	ļ	Beeches, Lor	ng Meadow	v, Goring	on Tha	mes RG89EG	
p r	-) e		ubject			Structur	al Calcul	ations		
In partnership with	D & P Solutio	ons		lation Num 806-C01	ıber	Rev B	Des. DL	Chkd. DK	Chkd. DK	Date 21.02.24
LOADS ACTING ON	THE FOOTING (BE		<u>N C3)</u>							
	Load Positioned from (m) to (m) 0.00 5.00 0.00 2.50 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00	Element Span/Heig 5.20 m 4.00 m 3.80 m 0.00 m 0.00 m 0.00 m		 	1.00 = 2.00 = 2.00 = 1.00 = 1.00 =	5.20 n 2.00 n 1.90 n 0.00 n 0.00 n	n n			Load Dispersion Length 2*D 2*D D
UDL LOADING UDL Dead Loading 215mm/Cavity Wall Roof (sloping) Timber floor (1st)	4.20 kN/m2 1.00 kN/m2 1.10 kN/m2 0.00 kN/m2 0.00 kN/m2 0.00 kN 0.00 kN	x x × × /	5.20 m 2.00 m 1.90 m 0.00 m 0.00 m 0.00 m	= = = = =	21.84 kN/m 2.00 kN/m 2.09 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 25.93 kN/m	x x × × ×	1.00 1.00 1.00 1.00 1.00 1.00 1.00		21.84 kN/m 2.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 25.93 kN/m	_
UDL Imposed Loadii 215mm/Cavity Wall Roof (sloping) Timber floor (1st) - -	ng 0.00 kN/m2 0.75 kN/m2 1.50 kN/m2 0.00 kN/m2 0.00 kN/m2 0.00 kN 0.00 kN	x x x / /	5.20 m 2.00 m 1.90 m 0.00 m 0.00 m 0.00 m	= = = =	0.00 kN/m 1.50 kN/m 2.85 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 4.35 kN/m	x x x x x x x	1.00 1.00 1.00 1.00 1.00 1.00 1.00		0.00 kN/m 1.50 kN/m 2.85 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 4.35 kN/m	_
Point Load P1 From Beam = DL = IL =		+ 1.00 x (MAX) 1.00 = 1.00 =) + 1.00 x (M 97.27 kN 29.63 kN	AX)						
Point Load P2 From Beam = DL = IL =	1.00 x (MAX) + 1 0.00 kN x 0.00 kN x		1.00 x (MAX) 0.00 kN 0.00 kN	1						
DESIGN FORCES										
PAD FOUNDATION (Vertical Force Horizontal Force in x Horizontal Force in y	direction	Pz Fx Fy	=	165.84 kN 0.00 kN 0.00 kN	1*B11 (LH	S)+UDL*Loa	d Dispersio	on Length		
Major axis moment x- Major axis moment y- Eccentricity x-x		Mxx Myy ex	= = =	0.00 kNm 0.00 kNm 0.00 mm						
Eccentricity y-y		ey	=	0.00 mm						

Allowable Bearing Capacity of Soil

100.00 kN/m2

=

RFC	TEN	Project	Beeche	s, Long Mea	dow, Goring	g on Thar	nes RG8	39EG	
pro		Subject		Struc	ctural Calcu	lations			
In partnership with									
D &	P Solutions	Calculation Nu 23-1806-C01	mber	Rev B	Des. DL	Chkd. DK	Chkd. DK	Date 21.02.24	
LOCATION: COLUMN C3 STRIP FOOTING OPTION			ING IS NO	TRECOMMEN					
PAD FOUNDATION OPTION FOUNDATION DIMENSIONS Length of Pad Footing Width of Pad Footing Depth of Pad Footing Pad Foundation Selfweight Area of Pad Foundation	L B H Sf A=L*B		= = =	1.40 m 1.40 m 0.50 m 12.00 kN/m2 1.96 m2			ł	y Pz ex	
					O-ti-f-t-t-		x	ey Fx x	
Bearing Pressure CHECK STABILITY AGAINST Total Overturning Moment Total Restoring Moment Overturning Safety Factor	(Pz+Sf)/A OVERTURNING IN X Mox=Myy+Fx*H Mrx=Pz*(L/2-ex)+Sf*A FOS=Mrx/Mox			96.61 kN/m2 0.00 kNm 132.55 kNm Correct	Satisfactor	у	B	Fy	_
CHECK STABILITY AGAINST Total Overturning Moment Total Restoring Moment Overturning Safety Factor PAD FOUNDATION BASE RE Total Pad Base Reaction	Moy=Mxx+Fy*H Mry=Pz*(B/2-ey)+Sf*A FOS=Mry/Moy CACTIONS AND BASE T=Pz+Sf*A	*B/2 PRESSURES IN X-DIRE	= C CTION = 1	0.00 kNm 132.55 kNm correct 189.36 kN				- L	
Total Pad Base Moment	Mbx=Myy+Pz*ex+Fx* qxmax=T/A+6*Mbx/(E	*L*L)	=	0.00 kNm 96.61 kN/m2	Satisfactor		(0.97)		
Minimum Base Pressure PAD FOUNDATION BASE RE Total Pad Base Reaction Total Pad Base Moment	qxmin=T/A-6*Mbx/(B* ACTIONS AND BASE T=Pz+Sf*A Mby=Mxx+Pz*ey+Fy*	PRESSURES IN Y-DIRE		96.61 kN/m2 189.36 kN 0.00 kNm	Satisfactor	у	(0.97)		
Maximum Base Pressure Minimum Base Pressure	qymax=T/A+6*Mby/(L qymin=T/A-6*Mby/(L*		=	96.61 kN/m2 96.61 kN/m2	Satisfactor Satisfactor	·	(0.97) (0.97)		
CHECK PAD BASE REACTIO Half of base Middle Third of Base Eccentricity of Base Reaction	N ECCENTRICITY AN I=L/2 tx=L/6		IN X-DIRE = = =	CTION 0.70 m 0.23 m 0.00 m	Within Mide	dle Third of			
Bearing Pressure	Qx=qxmax		=	96.61 kN/m2	Satisfactor	у	(0.97)		
CHECK PAD BASE REACTIO Half of base Middle Third of Base Eccentricity of Base Reaction	b=B/2 ty=B/6	D BEARING PRESSURE	IN Y-DIRE = = =	CTION 0.70 m 0.23 m 0.00 m	Within Mide	dle Third of	Base		
Bearing Pressure	Qy=qymax		=	96.61 kN/m2	Satisfactor	у	(0.97)		
	PROVIDE 1.	40m x 1.40m PAD FO0 AND 3No A393 MES				SS			

RFC	FN	Project	Bee	ches, Long Meado	ow, Goring	on Tha	mes RG89	ÐEG
proj		Subject		Struct	ural Calcul	ations		
In partnership with	P Solutions	Calculation 23-1806-0		Rev B	Des. DL	Chkd. DK	Chkd. DK	Date 21.02.24
COLUMN C4 Column Height, L = 3.00	m				I	DESIGN E	DUE TO BS	5950-1:2000
SECTION 152 x 152 D = 161.8mm ; B = 154.4mm ;		S355 E = 7cm ; Ag = 47.1cm2 ; I		kN/mm2 n4 ; ly = 706cm4 ; Zx	= 273cm3 ; 2	Zy = 91.5c	:m3 ; u = 0.8	48 ; x = 13.3
	1.5 * L = 4.50 1.5 * L = 4.50		Slenderne Slenderne		Lex / rx = Ley / ry =	65.69 116.28		ОК ОК
			Slenderne Equiv. Sle		1/[1 + 0.05 uvλy √βw]^0.25	= 0.67 = 66.54
VERTICAL LOAD		From Beam = 1.00 x DL = IL = Eccentricity =	B12(LHS) 27.64 17.30 B/2 =	kN	x (MAX)			
From Beam = 1.00 x B11(RHS) DL = 100.27 IL = 31.80 Eccentricity = D/2 =	kN kN	0 x (MAX) 	×	y	From Beam DL IL Eccentricity	=	0.00	
		From Beam = 1.00 x DL = IL = Eccentricity =	0.00		MAX)			
HORIZONTAL LOAD Wind Load Area Total Horizontal Load Construction Wind Load Applied in	= = = =	0.00 kN/m2 0.00 m2 0.00 kN Simply Supporte Major Axis (x-x)	d					
DESIGN LOADING AND MOM	ENT BS 5950	2.4.1.2						
Load Combination 1 1.4 DL + 1.6 IL		Load Combina 1.4 DL + 1.4 W				Combina)L + 1.2 IL	tion 3 . + 1.2 WL	
Axial Force=Shear Force=Moment x-x=Moment y-y=	257.63 kN 0.00 kN 15.47 kNm 5.12 kNm	Axial Force Shear Force Moment x-x Moment y-y	= = =	179.08 kN 0.00 kN 11.36 kNm 2.99 kNm	Shea Mom	Force Ir Force ent x-x ent y-y	= = = =	212.41 kN 0.00 kN 12.82 kNm 4.16 kNm
Factored Forces Max. Axial Force, Fc Max. Shear Force Max. Major Moment x-x, Mx Max. Minor Moment y-y, My	= = =	257.63 kN 0.00 kN 15.47 kNm 5.12 kNm		Unfactored Forces Max. Axial Force DL Max. Axial Force IL Max. Shear Force Max Moment x-x Max Moment y-y			= = = =	127.91 kN 49.10 kN 0.00 kN 10.68 kNm 3.47 kNm
ALLOWABLE STRESSES Design Strength of Steel Compressive Strength Bending Strength	py = pcy = pb =	355.00 N/mm2 112.00 N/mm2 239.00 N/mm2		(table 24, curve c) (table 16 for I-section	ns, pb = py fo	r SHS sec	ctions)	
ACTUAL Compression Resistance Moment Capacity (Major Axis) Moment Capacity (Minor Axis) Buckling Resistance Moment		= 527.52 = 96.92 = 32.48 = 65.25	kNm kNm	(For SHS Sections M	1b = Mc,x)			
SUMMARY [1] Fc/Pcy [2] mLT*Mx/Mb ; mLT=1 [3] my*My/Mc,y ; my=1.0		= 0.49 = 0.24 = 0.16		OK OK OK				
DEFLECTIONS Allowable Deflection Moment from vertical loads: x-x Vertical loads max deflection: x- Moment from vertical loads: y-y Vertical loads max deflection: y- Wind load Horizontal force Wind loads maximum deflection Max Deflection	-x M*L^2 / 16El M -y M*L^2 / 16El H	= 3.47 = 1.35 = 0.00 = 0.00	kNm mm kNm mm	ок		STEEL CO	DLUMN C4	= 152 x 152 x 37 UKC (S355)

In partnership wit	oje	c t				Structur	ral Calcul	allons		
	D & P Solutio	ins	Calculation Number 23-1806-C01			Rev B	Des. DL	Chkd. DK	Chkd. DK	Date 21.02.24
OADS ACTING ON	N THE FOOTING (BE	LOW COLUMN	<u>I C4)</u>							
oad 15mm/Cavity Wall	Load Positioned from (m) to (m) 0.00 0.60 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00	Element Span/Heig 4.80 m 0.00 m 0.00 m 0.00 m 0.00 m 0.00 m	<u>ht</u>	/ / /	1.00 = 1.00 = 1.00 = 1.00 = 1.00 =	4.80 0.00 0.00 0.00 0.00	m m m			Load Dispersi Length D D
DL LOADING DL Dead Loading										
15mm/Cavity Wall	4.20 kN/m2 0.00 kN/m2 0.00 kN/m2 0.00 kN/m2 0.00 kN/m2 0.00 kN 0.00 kN	x × × / /	4.80 m 0.00 m 0.00 m 0.00 m 0.00 m 0.00 m		20.16 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 20.16 kN/m	x × × × × ×	1.00 1.00 1.00 1.00 1.00 1.00		20.16 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 20.16 kN/m	_
DL Imposed Load 15mm/Cavity Wall	ling 0.00 kN/m2 0.00 kN/m2 0.00 kN/m2 0.00 kN/m2 0.00 kN/m2 0.00 kN	x × × / /	4.80 m 0.00 m 0.00 m 0.00 m 0.00 m 0.00 m		0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m	x × × × × ×	1.00 1.00 1.00 1.00 1.00 1.00		0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m	_
oint Load P1 rom Beam = L =			HS) + 1.00 127.91 kN 49.10 kN	x (MAX)						
oint Load P2 rom Beam = L = =	1.00 x (MAX) + 1. 0.00 kN x 0.00 kN x									
ESIGN FORCES										
AD FOUNDATION ertical Force lorizontal Force in x lorizontal Force in y	direction	Pz Fx Fy	= = =	193.14 kN 0.00 kN 0.00 kN	1*B11 (RI	HS) +1*B12 ((LHS)+UDL	*Load Disp	persion Length	
lajor axis moment > lajor axis moment y	к-х /-У	Мхх Муу	= =	0.00 kNm 0.00 kNm						
ccentricity x-x ccentricity y-y		ex ey	=	0.00 mm 0.00 mm						

100.00 kN/m2

=

RFC	<u>, en</u>	roject	Beeche	es, Long Mead	low, Goring	on Than	nes RG	89EG	
pro	ject	ubject		Struc	tural Calcul	ations			
In partnership with		Calculation Nu	mber	Rev	Des.	Chkd.	Chkd.	Date	
D &	P Solutions	23-1806-C01		B	DC3. DL	DK	DK	21.02.24	
LOCATION: COLUMN C4 STRIP FOOTING OPTION		- STRIP FOOT	TING IS N	OT RECOMMENI	DED FOR STI	RUCTURA	L REASC	DNS	
PAD FOUNDATION OPTION									
FOUNDATION DIMENSIONS Length of Pad Footing Width of Pad Footing Depth of Pad Footing	L B H		= = =	1.60 m 1.60 m 0.60 m				у	
Pad Foundation Selfweight Area of Pad Foundation	Sf A=L*B		= =	14.40 kN/m2 2.56 m2			Å	Pz ex	
Bearing Pressure	(Pz+Sf)/A		=	89.84 kN/m2	Satisfactory	/	в	ey Fx x	
CHECK STABILITY AGAINST Total Overturning Moment Total Restoring Moment Overturning Safety Factor	TOVERTURNING IN X-D Mox=Myy+Fx*H Mrx=Pz*(L/2-ex)+Sf*A*I FOS=Mrx/Mox		= = =	0.00 kNm 184.00 kNm Correct			¥	Fy	
CHECK STABILITY AGAINST Total Overturning Moment Total Restoring Moment Overturning Safety Factor	T OVERTURNING IN Y-D Moy=Mxx+Fy*H Mry=Pz*(B/2-ey)+Sf*A*I FOS=Mry/Moy		= = =	0.00 kNm 184.00 kNm Correct				j v	
PAD FOUNDATION BASE RE Total Pad Base Reaction Total Pad Base Moment	EACTIONS AND BASE P T=Pz+Sf*A Mbx=Myy+Pz*ex+Fx*H	RESSURES IN X-DIRE	CTION = =	230.00 kN 0.00 kNm					
Maximum Base Pressure Minimum Base Pressure	qxmax=T/A+6*Mbx/(B*l qxmin=T/A-6*Mbx/(B*L*		= =	89.84 kN/m2 89.84 kN/m2	Satisfactory Satisfactory		(0.90) (0.90)		
PAD FOUNDATION BASE RE Total Pad Base Reaction Total Pad Base Moment	EACTIONS AND BASE P T=Pz+Sf*A Mby=Mxx+Pz*ey+Fy*H	RESSURES IN Y-DIRE	CTION = =	230.00 kN 0.00 kNm					
Maximum Base Pressure Minimum Base Pressure	qymax=T/A+6*Mby/(L*E qymin=T/A-6*Mby/(L*B*		=	89.84 kN/m2 89.84 kN/m2	Satisfactory Satisfactory		(0.90) (0.90)		
CHECK PAD BASE REACTIO	ON ECCENTRICITY AND	,	IN X-DIRI	ECTION	Gausiaotory		(3.00)		
Half of base Middle Third of Base Eccentricity of Base Reaction	I=L/2 tx=L/6 ebx=Mbx/T		= = =	0.80 m 0.27 m 0.00 m	Within Midd	lle Third of	Base		
Bearing Pressure	Qx=qxmax		=	89.84 kN/m2	Satisfactory	/	(0.90)		
CHECK PAD BASE REACTION Half of base	DN ECCENTRICITY AND b=B/2	BEARING PRESSURE	IN Y-DIRI =	ECTION 0.80 m					
Middle Third of Base Eccentricity of Base Reaction	ty=B/6		=	0.27 m 0.00 m	Within Midd	lle Third of	Base		
Bearing Pressure	Qy=qymax		=	89.84 kN/m2	Satisfactory	/	(0.90)		
		0m x 1.60m PAD FOO AND 3No A393 MESI				SS			-